

TxSTUDIO 6.5 Mac Reference Manual

English

Osteoid, Inc. 3350 Scott Blvd #29, Santa Clara, CA 95054, U.S.A.
Tel) 408.333.3484 Fax) 408.295.9786 www.osteoidinc.com

Warranty Statement

There are no warranties, express or implied, with respect to the contents of this document, and all information provided herein is provided “as is.” Osteoid reserves the right to periodically change the information that is contained in this document; however, Osteoid makes no commitment to provide any such changes in a timely manner or at all.

Limitation of Liability

In no event shall Osteoid or its affiliates be liable to any party for any direct, indirect, special, or consequential damages in connection with your use of this document, including, without limitation, loss of business revenue or earnings, lost data, damages caused by delays, lost profits, or a failure to realize expected savings, even if Osteoid was expressly advised of the possibility of such damages.

End of Life Statement

Osteoid is committed to the continuous improvement of InVivoDental by utilizing state-of-the-art technology and trends to provide the most comprehensive software for the diagnoses of patients. The “shelf life” of InVivoDental software has been defined as 3 years from the release to ensure the highest level of patient care and safety. Notification of software improvements and new releases will be provided to customers to update to the latest version. Previous (older) versions may continue to be utilized for diagnosis, but support may be limited.

Trademarks

Osteoid and related marks, images, and symbols are the exclusive properties of, and trademarks of, Osteoid, Inc. All other brands and marks are the properties of their respective owners.

Copyright

Documentation for TxSTUDIO and the operating software are copyrighted with all rights reserved. Under the copyright laws, this documentation may not be reproduced, transmitted, transcribed, or translated into any human or computer language in whole or part without the prior written permission of the copyright holder.

About Osteoid and TxSTUDIO Software

This version of TxSTUDIO was released as an update to the original TxSTUDIO software from Osteoid, Inc. In this document, TxSTUDIO refers to the 6.5.0 version of the Osteoid TxSTUDIO for Mac software. To learn more about Osteoid, access the Osteoid website (www.Osteoidinc.com).

Intended User

TxSTUDIO is designed to be used by medical and dental professionals who have been appropriately trained to use 3D CT imaging devices and read the image data generated by the devices.

Reporting of Serious Events

If the use of this product resulted in, or may have contributed to, a death or a serious deterioration of health, this should be reported to the manufacturer at dental@osteoidinc.com.

Language

The original language of this manual is English. Other versions are available. Please contact Osteoid for other language versions.

Caution: Federal law restricts this device to sale by or on the order of medical and dental clinicians.

Indications for Use

TxSTUDIO is a software application used for the display and 3D visualization of medical image files from scanning devices, such as CT, MRI, or 3D Ultrasound. It is intended for use by radiologists, clinicians, referring physicians, and other qualified individuals to retrieve, process, render, review, store, print, assist in diagnosis and distribute images, utilizing standard Mac hardware. Additionally, TxSTUDIO is a preoperative software application used for the simulation and evaluation of dental implants, orthodontic planning, and surgical treatments.

This device is not indicated for mammography use.

Security Precautions

- Restrict access by requiring a username and password in operating system security settings. Only assign login credentials to trusted individuals within your organization. Refer to operating system website or customer support for instructions.
- Ensure that system restore and backup functionality is enabled. The ability to toggle system restore and backup should be restricted to system administrators.
- Enable multi-factor authentication where possible.
- Use cybersecurity controls such as a firewall, anti-virus, anti-malware, etc.
- InvivoDental requires internet access for license verification. Ensure that the network you will be using with the software is secure.
- To set up the controls recommended above, contact your internal IT team, operating system manufacturer, internet service provider (ISP), modem/router manufacturer, or refer to manufacturer website/documentation.
- Customers who purchase and use InvivoDental are ultimately responsible for the implementation of safe and secure practices for the protection of patient data.
- Note: To request a copy of the InvivoDental Software Bill of Materials (SBOM), or the list of data ports used by the software, or the instructions to ensure sensitive data is completely removed after uninstalling the software, e-mail support@osteoidinc.com

General Precautions

Warning: The software provides tools for dental prosthetics creation and design but is dependent on the user to determine and use the appropriate parameters. Incorrect parameters may affect the quality of the final milled products or otherwise to surgical delays or complications.

Warning: Please ensure all hardware devices with the software are password-protected from unauthorized use and all patient information is secure.

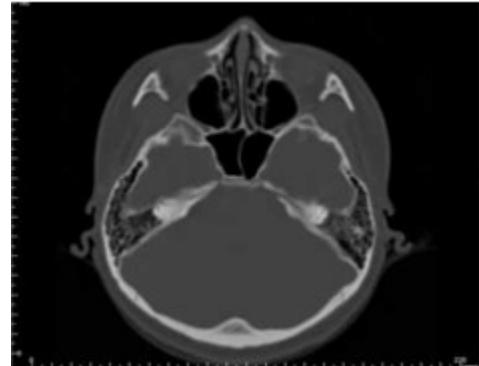
Table of Contents

Table of Contents	4
Introduction.....	10
System Requirements.....	11
Installing Invivo.....	12
About the License Type.....	12
Perpetual Licenses	12
Network Licenses	12
Internet Requirement.....	12
Website Installation Instructions.....	12
TxSTUDIO Setup Wizard	13
Feature List.....	15
Software Layout	16
Invivo Preferences	17
Display Preferences	17
Volume Rendering Preferences.....	19
File Manager Settings	20
Basic Features	21
DICOM & Invivo File Loading with the File Manager.....	21
Invivo/DICOM File Saving.....	23
Invivo.....	23
DICOM.....	23
Custom Saving Dialog.....	24
Saving As an Invivo Project File.....	25
Send File.....	25
Invivo Workspace	25
Case Information Display.....	27
Manage Workflow.....	27
Image Capture to File.....	27
Image Capture to Gallery	28
Image Capture to Clipboard	28
Image Capture to File in Temporary Folder.....	29
Image Navigation	30
Zoom In/Out.....	30
Pan (Shift)	30
Free Rotate.....	31

Free Rolling.....	31
Increment Rotate	31
Increment Roll.....	31
Anatomical Plane Clipping.....	32
Scroll Slice.....	32
Move/Rotation Widget.....	32
3D Restoration Widget.....	32
Full Screen Mode	33
Switching to Full Screen Mode.....	33
The View Tabs:.....	34
ArchSection View Features	34
ArchSection: Toolbar	35
ArchSection: Control Panel.....	37
ArchSection: Rendering Window.....	39
ArchSection: Creating A Nerve Pathway.....	40
ArchSection: Custom Layouts.....	41
Section View Features	42
Section: Toolbar	43
Section: Control Panel.....	45
Section: Rendering Window.....	47
Section: Light Box	48
Airway View Features	49
Airway: Toolbar.....	50
Airway: Control Panel	52
Airway: Rendering Window.....	54
Airway: Airway Measurement	55
Airway: Flythrough	56
Volume Render View Features	57
Volume Render: Toolbar	58
Volume Render: Control Panel.....	60
Volume Render: Rendering Window	61
Volume Render: Reorientation	62
Volume Render: Volume Measurements.....	63
Volume Render: Movie Capturing and Customized View Sequences	64
Implant View Feature.....	65
Implant: Toolbar	66
Implant: Control Panel.....	68

Implant: Rendering Window.....	70
Implant: View Preset Setup.....	71
Implant: Model Visibility.....	72
Implant: 3D Implant Widget	72
Implant: 2D Implant Widget	72
Implant: 3D Implant Planning.....	73
Implant: Pano Implant Planning	74
Implant: Bone Graft Simulation.....	75
Implant: Advanced Restoration Design	76
Implant: Adding Restorations.....	76
Implant: Check Sleeves.....	77
Implant: View Sequencer.....	78
Implant: Settings and Preferences	80
Detailed Implant Settings	81
Preferred Implants Settings.....	81
Update Implant Library	82
Density Profile Control.....	82
Restoration View Features	84
Restoration: Toolbar.....	85
Restoration: Control Panel	87
Restoration: Rendering Window & Mesh Manipulation.....	89
Restoration: Stone Model Registration	90
Restoration: View Preset Setup.....	92
Restoration: Abutment Planning	93
Restoration: Abutment Planning Dialog	93
Abutment Parameters	93
Restoration: Crown Types	95
Crowns for prepped teeth or custom abutments.....	95
Pontics	95
Bridges.....	96
Restoration: Articulation and Adjust Occlusion	97
Restoration: Preferences	98
Endo View Features	99
Endo: Toolbar	100
Endo: Control Panel.....	102
Endo: Rendering Window.....	103
Endo: Volume of Interest	104

TMJ View Features.....	106
TMJ: Toolbar	107
TMJ: Control Panel.....	109
TMJ: Rendering Window.....	110
Arch Spline (Focal Trough) Navigation	110
TMJ: Layout.....	111
Super Pano View Features.....	112
Super Pano: Toolbar.....	113
Super Pano: Control Panel	114
Super Pano: Rendering Window.....	115
How to make a good Pano?	115
Super Ceph View Features	116
Super Ceph: Toolbar	117
Super Ceph: Control Panel.....	118
Super Ceph: Rendering Window.....	119
Superimposition View Features	120
Superimposition: Toolbar	121
Superimposition: Control Panel.....	123
Superimposition: How to Superimpose Two Volumes	125
Superimposition: Using Registration Widget for Fine Adjustments.....	127
Superimposition: Using Volume Registration for Fine Adjustments.....	128
Superimposition: Difference Between .vdata Files and .odata Files	130
Gallery View Features	131
Gallery: Toolbar	132
Gallery: Control Panel.....	132
Gallery: Rendering Window	133
Gallery: Adding Images to the Gallery.....	134
Gallery: 2D Image Options.....	137
Model View Features.....	138
Model: Toolbar	139
Model: Control Panel	141
Model: Rendering Window.....	143
Model: Custom View Preset Setup	144
Model: Simulations	145
Consultation View Features	146
Consultation: Toolbar	147
Consultation: Control Panel.....	148


Common How to Tasks	149
How to Trace a Nerve.....	149
How to Create Reports In Life Size.....	150
Other View Tabs with Life-Size Printing.....	150
How to Create a Positive Airway View.....	151
How to Create an Invivo Model Simulation and Video.....	152
Invivo6 Additional Modules	154
3DAnalysis Module Features	155
3DAnalysis: Toolbar	156
3DAnalysis: Control Panel.....	158
3DAnalysis: Coordinate System.....	159
3DAnalysis: Tracing Tasks.....	164
Tracing Task Examples and Tips	165
3DAnalysis: Text View.....	170
Colored Wigglegram	172
3DAnalysis: VCA Mode.....	173
3DAnalysis: Advanced Analysis Configurations	177
Configuring a Frontal Analysis	177
Configuring a Sassouni Analysis.....	177
3DAnalysis: Create Face Photo	178
3DAnalysis: Landmark-Based Superimposition.....	180
Performing Landmark-Based Superimposition.....	181
Superimposition Text View.....	182
How Does 3DAnalysis Work with the Superimposition Tab?.....	183
3DAnalysis: Layout Options	184
3DAnalysis: 3DAnalysis Settings	185
Special Landmark Properties	188
3DAnalysis: Tracing Guide.....	196
3DAnalysis: Default Tracing Tasks and Landmarks.....	198
3DAnalysis: Save Information	201
3DAnalysis: 3D Surgery Tool	203
3DAnalysis: Profilogram.....	206
Report Module Features	207
Report: Toolbar.....	208
Report: Control Panel	209
Report: Rendering Window.....	210
Report: Controls	211

Report: Adding Text Controls	212
Report: Adding Single Image Controls	214
Report: Image Alignment.....	215
Report: Image Type Definitions.....	216
Report: Managing Templates	217
Report: Preferences	218
Report: Page Setup	219
Stitching Module Features	220
Stitching: Toolbar.....	221
Stitching: Control Panel.....	222
Stitching: How to Stitch Two Volumes	223
Invivo6 Software Troubleshooting	228
Keyboard Shortcuts	230
Index.....	236

Introduction

TxSTUDIO Imaging Software

Osteoid, Inc. is a medical imaging company composed of a cross-functional team consisting of the most elite researchers, mathematicians, engineers, software developers, business analysts, industry leaders, academic faculty, and dental specialists. We believe that TxSTUDIO software will enable the profession to initiate a revolution of unimaginable scope and magnitude. Ultimately, our mission is dedicated to developing simple and refined software specially designed for dentists to utilize the most advanced cutting-edge software and technology to better serve their patients. With TxSTUDIO software, doctors can create 3D volume renderings on their own computers, get cross sections, trace nerves, place implants, print images, save images, and many more functions. The software is designed to reconstruct these 3D volume renderings from DICOM files generated by CBCT, Medical CT, and MRI radiography machines. TxSTUDIO is intended for use as a planning and simulation software in the placement of dental implants, orthodontics, and surgical treatment.

This manual is intended to provide supplementary information to your direct training with the Osteoid support team. For correct and safe use, training is available to all TxSTUDIO users and is highly recommended. In this document, TxSTUDIO refers to the latest version of the Osteoid TxSTUDIO software and is synonymous with the terms “Invivo” and “Invivo6.” Previously released versions of this manual are available. For more information on how to access previous versions of the TxSTUDIO Reference Manual, please contact the Osteoid customer support team at (408) 333-3484 or email support@osteoidinc.com

System Requirements

Below are the minimal and recommended system configurations.

Having an adequate computer system is essential to using TxSTUDIO efficiently and generating the highest quality images possible for enhanced analysis and presentation for your patients and colleagues. The most important element is the video card (3D graphics chip or GPU). If your system does not have an appropriate video card, you can purchase and install video cards for desktop computers.

TxSTUDIO has minimal system requirements; however, Osteoid recommends the following configurations to fully utilize all the features within the TxSTUDIO Software. The following recommendations have been updated in February 2022:

Summary

IMPORTANT: TxSTUDIOMac is not compatible with i-Phone, i-Pad, i-Pad Mini, and Apple Watch. TxSTUDIOMac may not be compatible with systems older than 2011.

	Minimum	Recommended
System	2011 editions of <ul style="list-style-type: none"> • Macbook • iMac • Mac Mini <i>with Intel HD 5000 or higher</i>	Latest editions of the Macbook Pro, Macbook Air, Macbook, iMac, or Mac Pro

Detailed Requirements

	Minimum	Recommended
CPU	Intel Core i5 2400 or equivalent	Intel Core i7 or comparable multi-core processor
Graphics Card	Intel Iris Plus Graphics 640 <small>Note: Lower-tier graphics cards may run the software but exhibit lower performance.</small>	ATI Radeon HD 6750 or Intel Iris Plus 640 or comparable
RAM	4GB DDR3	8GB
Hard Disk	100 GB	500 GB
OS	Apple OS X v 10.11 El Capitan	

Note: Please check the system preferences for the mouse or trackpad. Right-click operations in the PC version are performed by the Mac's secondary click input. Devices such as the Apple Mouse or the Trackpad may impede software navigation. Keyboard commands may also vary depending on the keyboard manufacturer. Some software interfaces may not be displayed correctly if the resolution is set lower than 1280x800.

Installing Invivo

About the License Type

The authorization code provided for activation should be one of the two license types below. If the license type is not known, please contact the distributor of the license, which can be either Osteoid or a partner CBCT scanner manufacturer that bundles Invivo licenses.

Perpetual Licenses

- This is a single-use license for one computer. Internet connection will be required for the initial installation but not during subsequent use of the software. If Internet access is not available, the license can be manually activated by the distributor's tech support.

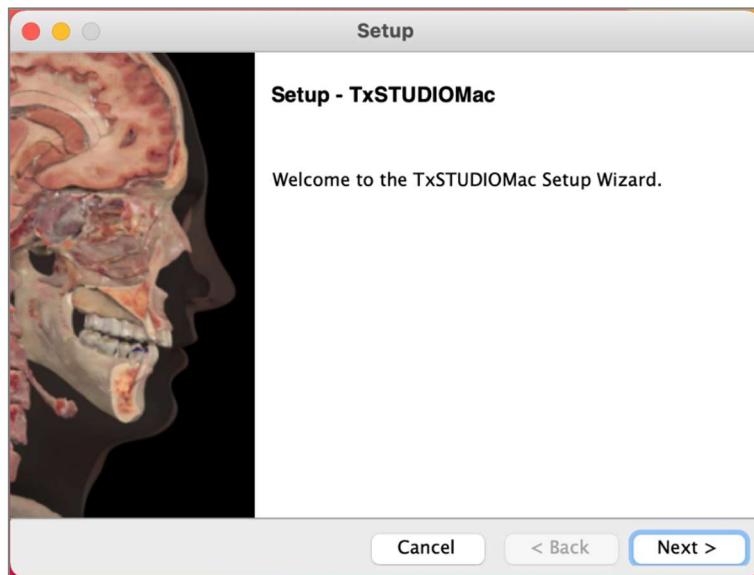
Network Licenses

- This license can install up to four computers that are on the same Internet network as at least one perpetual-licensed computer. Hence, a network license can only be used after a perpetual computer is installed. Internet connection will be necessary to launch the software.

Note: Please ensure each code is entered on the desired computer. Once a code has been activated, you must contact the distributor of the license to transfer the license. Invivo licenses are not interchangeable between the PC and Mac versions.

Internet Requirement

While perpetual computers only need Internet connection during the initial installation, network computers will require Internet to access the software. If the Internet connection becomes unavailable, the network computers will fall onto a grace period of eight hours. After the grace period ends, the license will be inactive until Internet connection linked to a perpetual computer is reestablished.

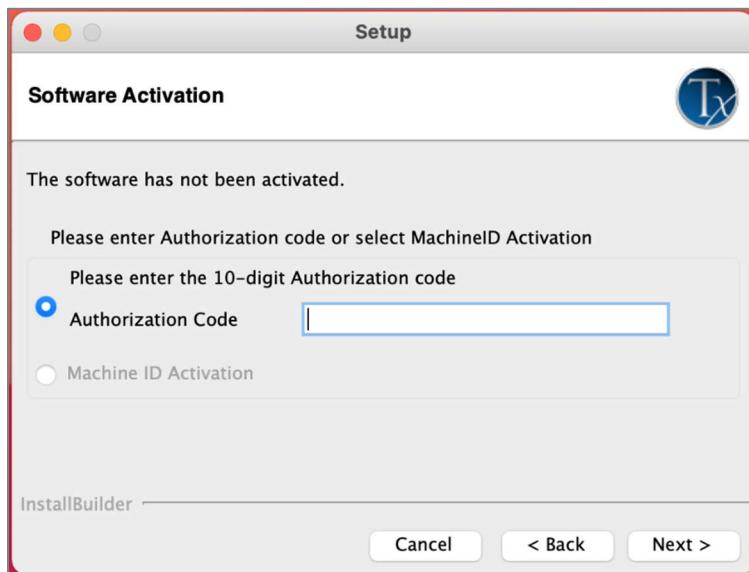

Website Installation Instructions

1. Go to www.Osteoidinc.com
2. Select “Dr. Login.”
 - Contact your license distributor for login information.
3. Click on the Invivo Installer.
4. Click “Save File.”
5. Run File.

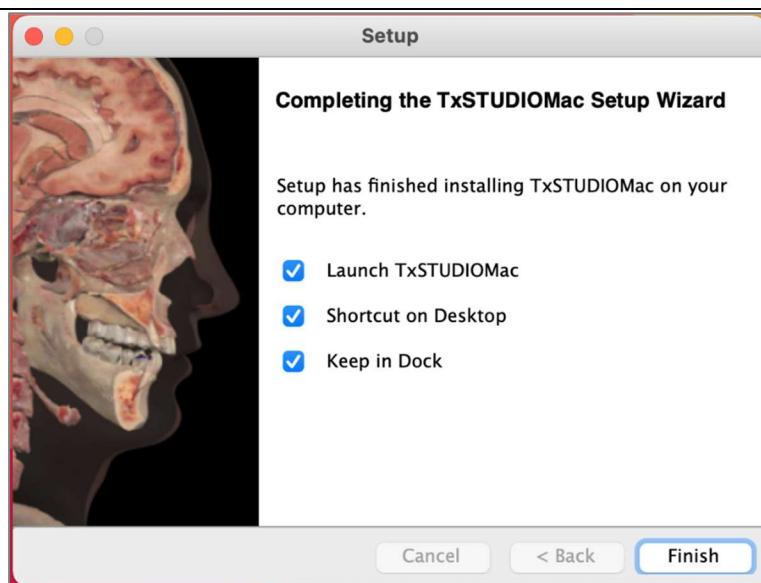
TxSTUDIO Setup Wizard

Before proceeding, please ensure the computer is connected to the Internet. TxSTUDIO Setup will check for certain components that are important to the performance of the software.

Click **Next** to continue.


Review the End-User License Agreement and accept the terms if desired to proceed with the installation.

Click **Next** to continue. The program will proceed with installation until completed.


Enter the numerical authorization code. If you have an alphanumeric license key, choose the Machine ID Activation option instead.

Click **Next** to continue.

Once the installation is complete, the wizard will provide options before exiting.

Click **Finish** to exit the installation wizard.

Feature List

An overview of the various features provided by Invivo

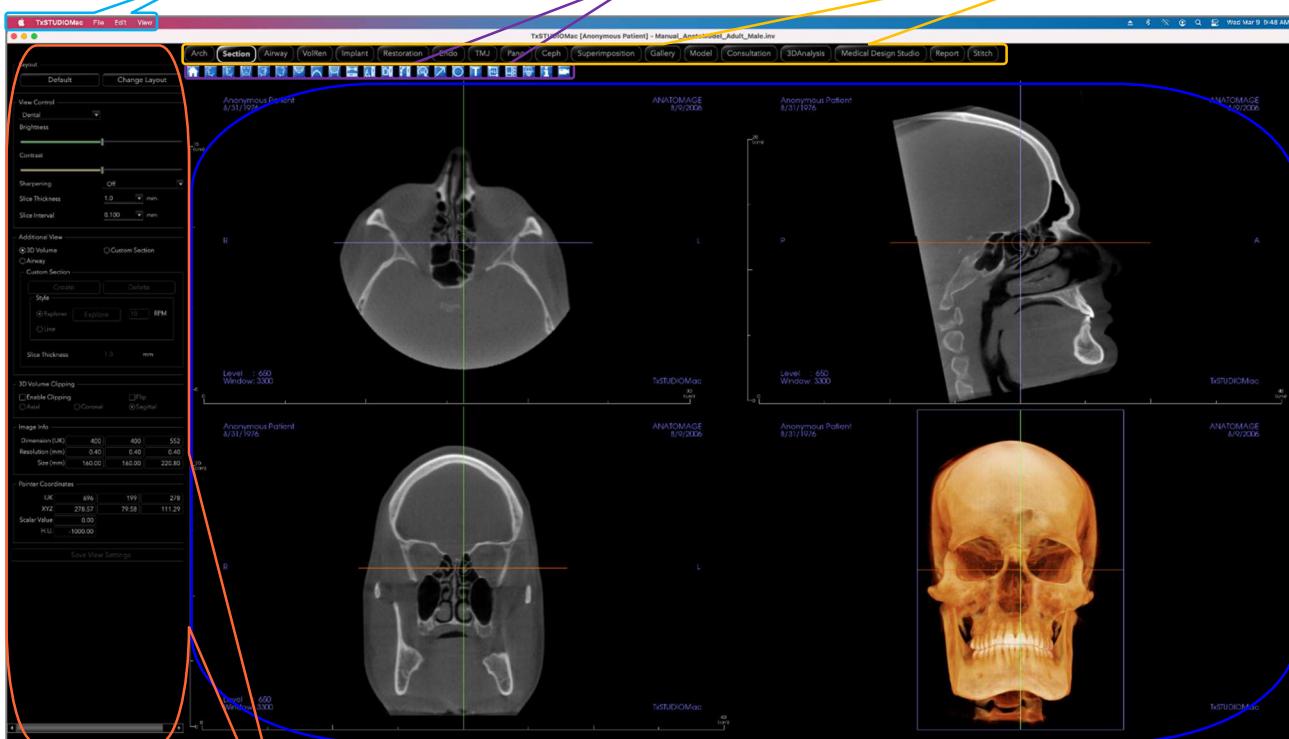
- **Directly Opens DICOM Data from Any CT Machine**
- **Invivo File Compression**
- **Section and Multislice View Operations**
- **Volume Rendering of Scan Data**
- **Linear, Angular, Circumferential, Area, and Volumetric Measurements***
- **Image Capture and Export**
- **AVI (Movie) Capture and Export**
- **Implant, Abutment, and Restoration Treatment Planning**
- **Bone Density Evaluation**
- **Quick Airway Volume Measurement and Evaluation**
- **Automatic Superimposition and Mirroring**
- **Integrated Treatment-specific Video Sequences**
- **Platform for the Invivo Model Service**

*All measurements are performed with the metric system.

Software Layout

The following is a description of how *Invivo* is organized by **Menu Bar**, **Toolbar**, **View Tabs**, **View Control Panel**, and **Rendering Window**:

Menu Bar


The **Menu Bar** contains application operations such as open, save, close, print, capture, etc.

Toolbar

Tools can be accessed to perform certain functions on patient images. Sets of tools are associated with a specific **View Tab**.

View Tabs

The **View Tabs** perform specific tasks or look at specific subjects of interest by adjusting the **Toolbar** and **View Controls**.

Control Panel

The **Control Panel** is the region where patient images can be manipulated and controlled. The **Control Panel** is associated with a specific **View Tab**.

Rendering Window

Rendering Window is the region where patient images are displayed. This window can be customized within many of the **View Tabs** by using the **Toolbar**.

Invivo Preferences

This section will explain the different options within the Preference window of Invivo. The Invivo preferences include options for Display settings, Volume Rendering settings, as well as File Manager settings.

Accessing the Invivo Preferences:

- In the Menu bar of TxSTUDIO, select “TxSTUDIO Mac.”
- Select “Preferences...” from the “TxSTUDIO Mac” drop-down.

Display Preferences

GUI Settings

- Volume Background: Sets the background color for the rendering window.
- Measurement Font Size: Sets the measurement font size to a size preset: small, medium, or large.
- Measurement Text Color: Sets the text color for measurement notations.
- Measurement Line Width: Sets the width for measurements.
- Measurement Line Color: Sets the color of the measurement lines.
- Tag Text: Provides an additional label to the right-hand corner of the rendering window.
- Date Format: Current date format for case information display.
- Continuous view:
 - Checked – Switching between view presets for volume renderings will show intermediate volume positions.
 - Unchecked – Switching between view presets will not show intermediate positions; the volume will “jump” to the final position.

- Make text annotations global: When checked, previously placed or new text annotations added to any 2D slice view will be visible when scrolling past the slice the measurement was placed on.
- Cycle 2D distance measurement color: Measurement colors will cycle with every measurement that is added.
- Enable multiple distance measurement mode: Distance measurement will become a toggle on/off button for measurement mode. Toggling “on” this mode will continue to pick beginning and end points for linear measurements with each click after the first measurement has been created.

Color Theme:

- Two color themes are available for the software.
- The software images in this manual are in Black and White mode, but the overall functions are shared between the themes.

Touch/Trackpad Scroll:

- Scrolling with inertia: This option allows scrolling to continue after contact ends when scrolling above a certain speed threshold.
- Scrolling speed: Adjust the scrolling speed.

Auto save 2D view setting on application exit

- This setting will determine if 2D view settings made in each of the applicable tabs will be saved automatically upon program closure and be reloaded with the next opened case. If left unselected, the user will have to manually save the configuration by clicking Save View Settings in the working tab. The specific 2D view settings that will be saved in each tab are given in the table below:

ArchSection	Slice Interval, Cross Section Width/Interval/Thickness, Auto R-L, Pano Image Type, Pano Ruler Enabled, Brightness/Contrast mode, Layout (including Axial vs. Cross Series and Print Layout), Sharpen Filter, Color Preset, Nerve Diameter, and Nerve Visibility
Section	Rendering presets, custom Brightness/Contrast (if the Dental preset is chosen), Sharpen Filter, Volume Clipping, Slice Thickness
Airway	Rendering presets, custom Brightness/Contrast (if the Dental preset is chosen), Sharpen Filter, Volume Clipping, Slice Thickness
Implant	Layout, Restoration Lock, View Preset, Brightness/Contrast, Sharpen Filter, Volume Clipping, and Remove Crown
Endo	Rendering presets, custom Brightness/Contrast (if the Dental preset is chosen), Sharpen Filter, Volume Clipping, Slice Thickness
TMJ	Lateral Width/Interval/Thickness, Pano Ruler, Brightness/Contrast mode and settings, Layout (including sequence type and Print Layout), Sharpen Filter, Color Preset, Focal Trough Thickness and Symmetry, Pano Render Mode

Volume Rendering Preferences

Volume Rendering View Settings

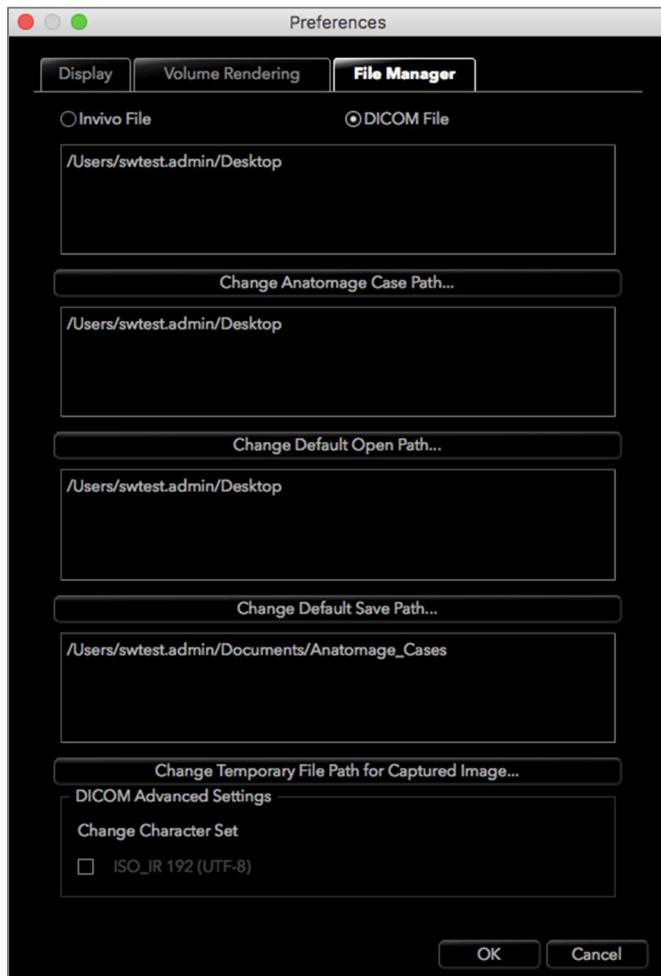
- Quality Resolution: Sets the limit for the resolution of the image. This can be set to either a user-defined number or set to Unlimited.
- Initial Rendering: Sets the rendering quality upon opening Invivo.
- Shaded Slice Sampling Rate: Accepts a numerical value that sets the sampling rate to improve image quality at the cost of performance.
- Use lower resolution while moving volume: Positional changes of the volume will be rendered at a low-quality resolution while maintaining the quality resolution setting in the final position.

Volume Rendering Range

- The user can define the range of Hounsfield Units that will be rendered. This cannot be set when “Use automatic H.U. range” is checked.
- Checking “Non-CT modality: use scalar for min-max” will allow the user to define the minimum and maximum scalar units that will be rendered.

Material

- Various properties can be adjusted to change the appearance of a volume rendering. Ambient, Diffuse, and Specular effects can be rendered in different colors.
- The degree of Emission and Diffuse can be adjusted with the respective sliders.
- Shininess is set to a number – higher numbers denote less shininess.


File Manager Settings

File Type-Associated Folder Paths

Folder paths can be set for each of the Invivo and DICOM file type options. When one mode is selected, the program will use the file paths associated with that file type mode, but the user may still save or open either file type at any time.

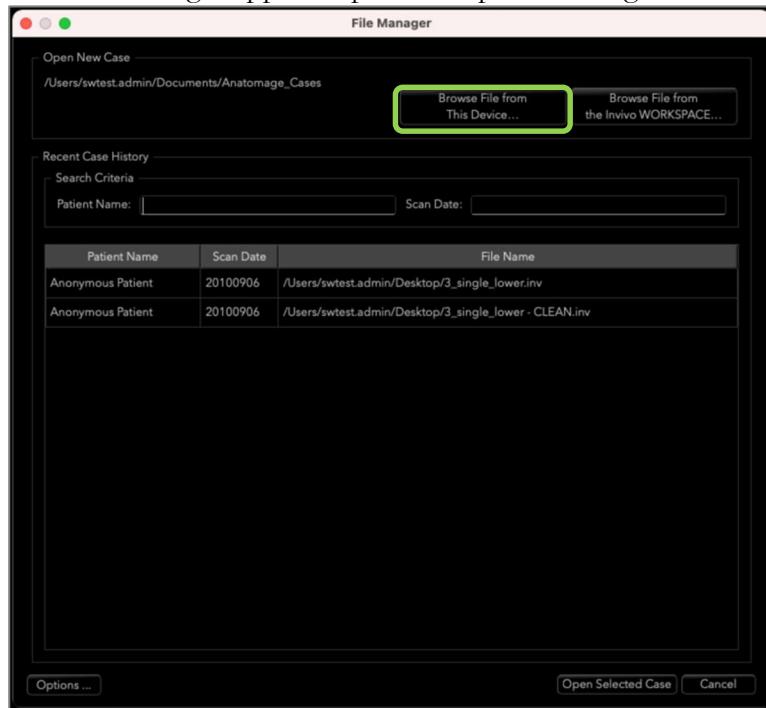
File Path Preferences for Different Users

In the situation that there are multiple users on a single computer with Invivo6 installed across multiple user accounts.

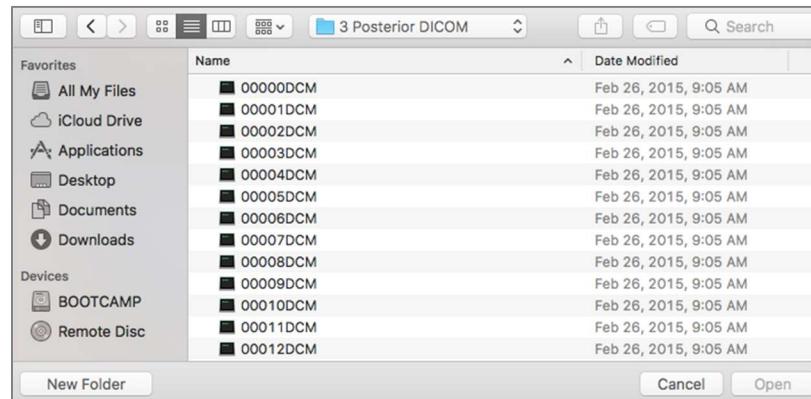
File Paths

- **Anatomage Case Path:** Starting the program will open a window showing a list of cases within this location.
 - Can also serve as a backup folder for all opened cases.
- **Default Open Path:** This is the starting location for attempting to open a case through File → Open in the Menu bar.
- **Default Save Path:** This is the starting location for saving a case file in Invivo.
- **Temporary File Path:** This is the temporary location that the Capture To File In Temporary Folder function uses.

DICOM Advanced Settings

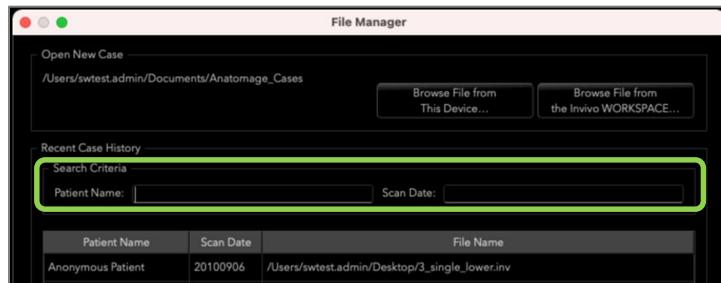

- This option is only available if the DICOM File option is selected.
- **Saving Character Set:** If checked, this sets the value for the Specific Character Set DICOM tag (0008, 0005).

Basic Features


The following is a detailed explanation of the various features provided by Invivo.

DICOM & Invivo File Loading with the File Manager

To open a DICOM data set or Invivo-associated file type (.inv, .amg, apj), first launch the Invivo software. The File Manager appears upon startup for loading the scan data.

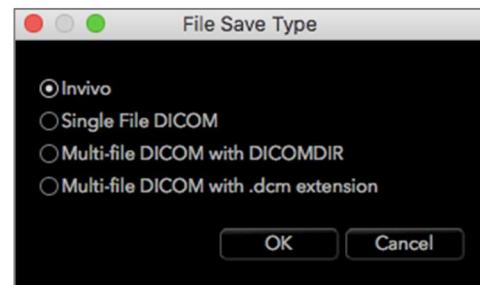


Click the **Browse File from This Device** button to search manually for local data to open. For opening DICOM data, as shown to the right, simply highlight one of the .dcm files and click **Open**. It does not matter which DICOM file is chosen, as selecting one opens all the files within the data set present in that folder. For opening an Invivo file, select it and press **Open**. Invivo files can also be compressed and opened.

The File Manager automatically stores recently viewed case locations. This allows for quicker access to these cases. By default, files are saved in the “Anatomage Cases” folder, located in “My Documents.” This location can be changed in the Menu Bar → TxSTUDIOMac → Preferences → File Manager.

Quickly search through the recent cases by typing in the Patient Name or Scan Date in the search fields (shown right). The selected cases can be removed from the Recent Case List by selecting the Options... button and using the additional buttons (shown below). These options can completely clear the Recent Cases list.

Click the **Browse File from The Invivo Workspace** button to search cases available on Invivo Workspace. Enter the Invivo Workspace account credentials when prompted. Available cases are displayed in the File Manager to be loaded into Invivo.


After closing a case, to reopen another one, click on “File” → “Open”, and the File Manager will appear again.

Selecting **Options...** will display additional options to delete the recent case history or to delete select cases from the list. This will only modify the cases that are displayed on the File Manager and does not delete the actual files from where they are saved.

Invivo/DICOM File Saving

Invivo provides four options for saving and each type differs in the size of the saved file and its compatibility with other software. Choosing “File” → “Save As...” for any file will present the dialog on the right. Choosing “File” → “Save” when a DCM file is open will save an INV in the specified location or simply overwrite the same file if it is of the INV file type.

Invivo

The following work can be saved as an Invivo file (.inv).

- Case Information & Patient Orientation
- Traced Nerves
- Implants & Implant Measurements
- Volume Measurements, Landmarks, and Annotations
- Images captured within the Gallery
- Sculpting Operations
- †Models imported from MDStudio
- †Tracings performed in 3DAanalysis

†These functions require the installation and activation of additional software modules.

Click “File” → “Save As...,” browse to the destination folder, name the file (default is the patient’s name), then click **Save**.

The following save dialog box will show up. Select the default “Full” option for saving everything without losing any information.

DICOM

When the DICOM file type is chosen, the output options are either a single lossless DICOM or a multi-file DICOM (with DICOMDIR) accompanied with an Invivo workup file containing workup data and a folder of exported Gallery images in DCM format.

For single-file DICOMs (Figure 1), the save dialog asks for a location to save the files. For multi-file DICOMs (Figure 2), create or choose a folder to save the slices and DICOMDIR file. The DICOMDIR file presents the directory of slices to Invivo to accelerate the loading speed.

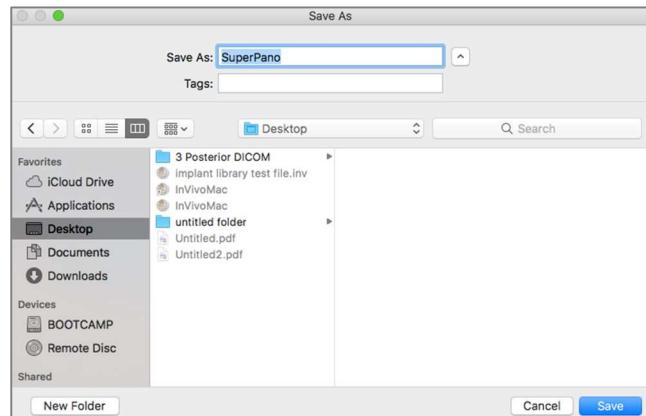
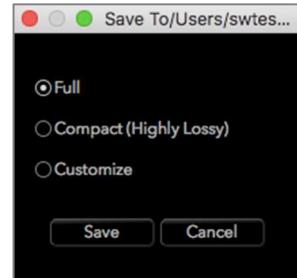
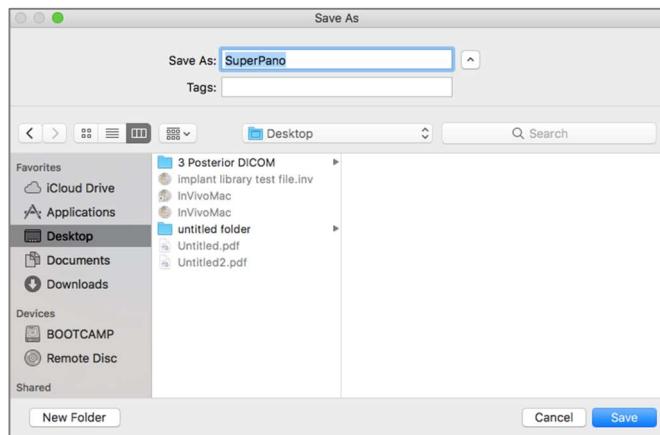
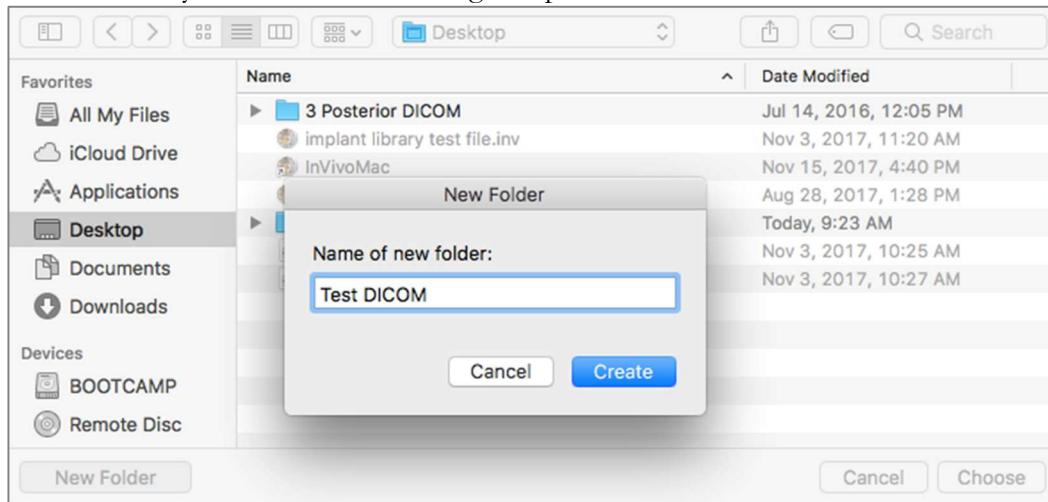




Figure 1: Single-file DICOM Save Dialog

The DICOM File Save Option dialog (Figure 3) will present numerous options for saving the file. Compression will reduce the size of the file (at the cost of increased saving and loading speed), “Lossless” or “Lossy” determines the quality (amount of data) of the file that is saved. Resampling will change the resolution by a factor in each orthogonal plane.



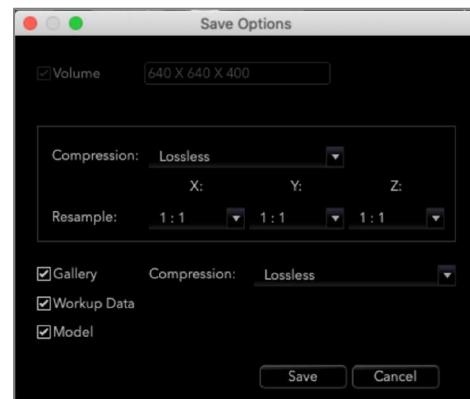

Figure 2: Multi-file DICOM Save Dialog

Figure 3: DICOM File Save Options

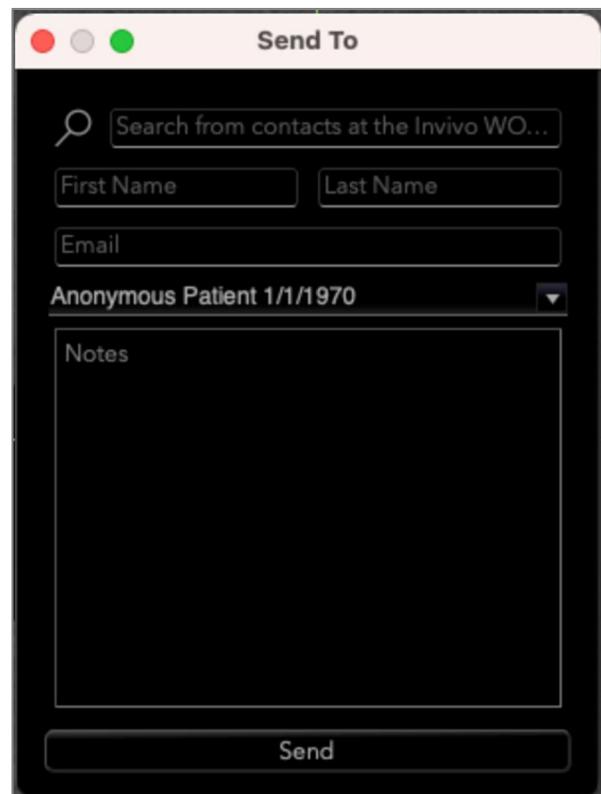
Custom Saving Dialog

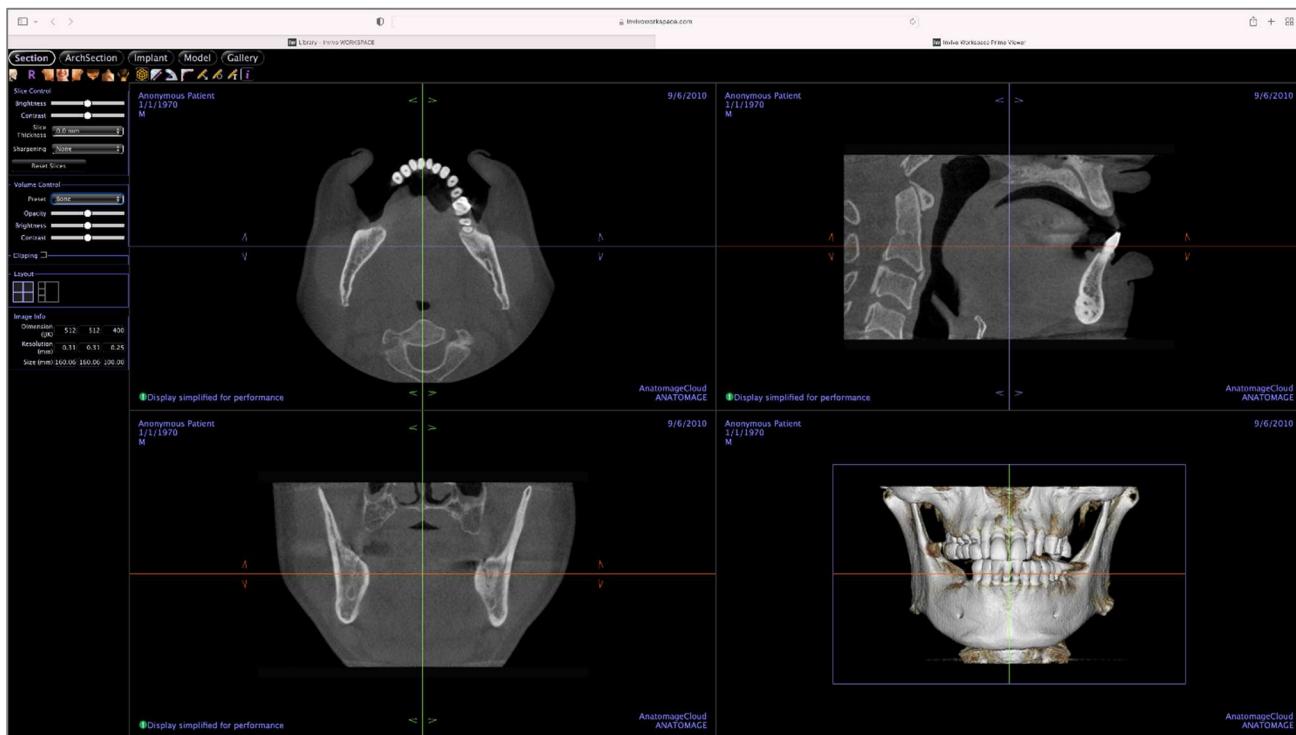
Available for Invivo file saving: By selecting the “Customize” option, the custom saving dialog shows up. In the dialog box, one can compress the data. For the main volumetric image, you can select to save it as “LossLess” or “Lossy” compression. With LossLess compression, the volume is compressed to about 1/3rd – 1/4th of the original size. With the Lossy compression option, the file size can be dramatically reduced, but the image is altered. Resampling the data will greatly reduce its size by combining voxels to reduce the overall voxel count. Rescaling the image will reduce the number of shades of gray in the image. You can also choose to selectively compress images in the gallery, the clinical content (such as implants and nerve tracings), and the models. If “Save additional series” option is selected the coronal and sagittal DICOM series will also be exported

along with the default axial series.

Warning: Saving files in lossy format degrades image quality.

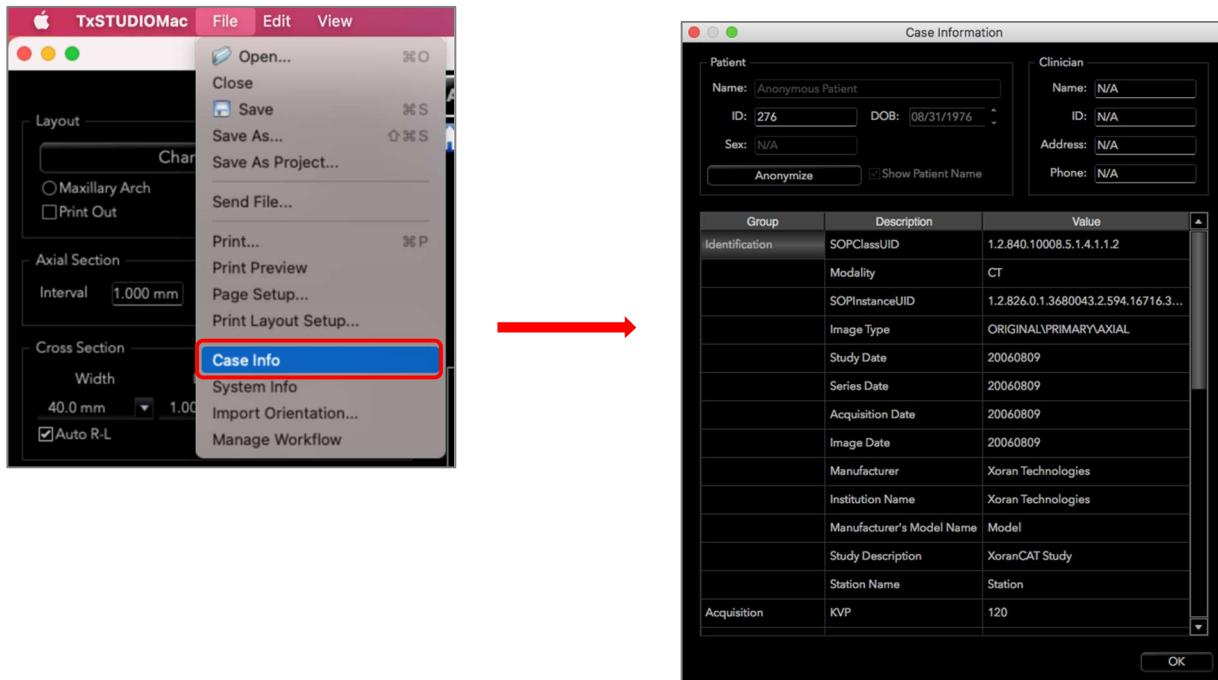
Saving As an Invivo Project File


Click “File” → “Save As Project...” to save the case as an APJ, Invivo Project file. This file **only** saves work up data. It requires a reference data (.dcm scan data or .inv file) when opening. If Invivo cannot locate the reference data, it prompts to locate the data filepath. Because it is saving only the changes to the original, APJ files save much faster than full INV files.


Send File

Invivo Workspace

The active case can be sent through Invivo Workspace as Invivo, single file DICOM, multi-file DICOM with DICOMDIR, or multi-file DICOM with .dcm extension file types. The software prompts the user to sign in to an Invivo Workspace account. If no account was previously made, click **Create Account** to get started. Toggle on “Remember Me” to retain the username and password that is used. Click **Forgot Password?** To reset the password for an existing workspace account if needed.

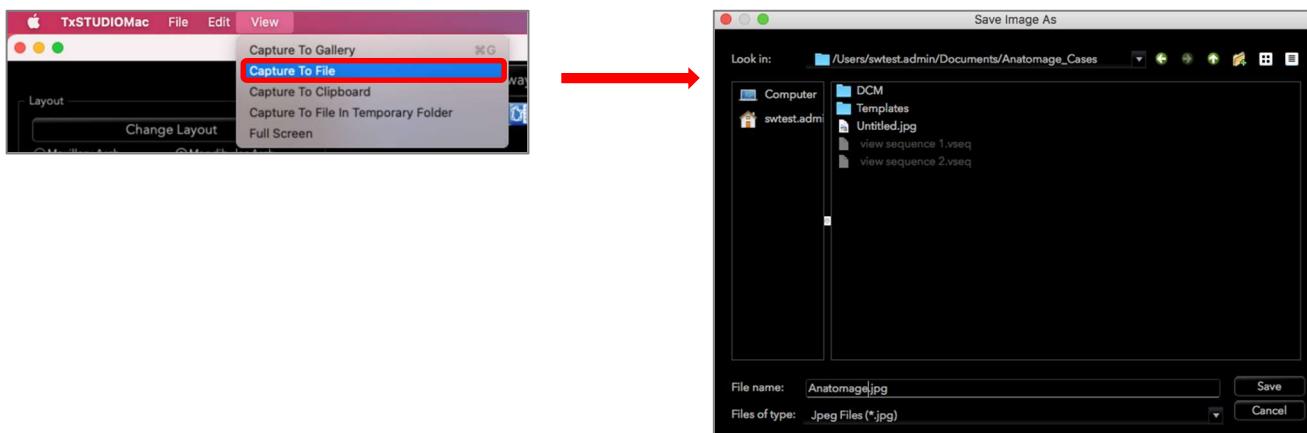

After logging in, select the file type to upload and send. The user can then input the recipient's name, email, message subject, and discussion notes. Existing contacts in Invivo Workspace can be searched to automatically populate the contact. The case and message are sent to the recipient's Invivo Workspace account. The recipient can then preview the case through the browser viewer or download it for further use.

Case Information Display

To display or hide the Case Information for a specific patient, go to the “File” → “Case Info.” Click **Anonymize** then click **OK** to save the changes.

Manage Workflow

To edit the naming, order, and number of tabs that load with the software, go to the “File” → “Manage Workflow.”

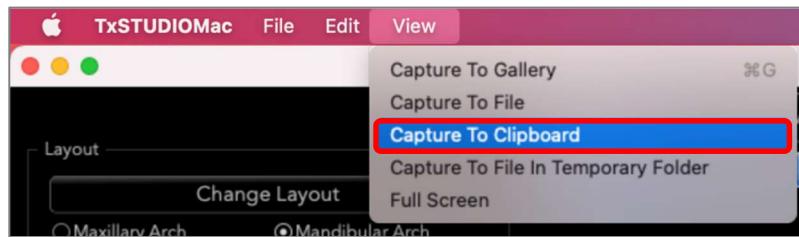

To rename a tab, click on it in the Name column in the My Workflow window, and type directly into the field. To change the order of tabs, click on the tab and select “Move Up” or “Move Down.”

To add or remove tabs, select them from the Source Views window or the My Workflow window and select the button to add or remove respectively.

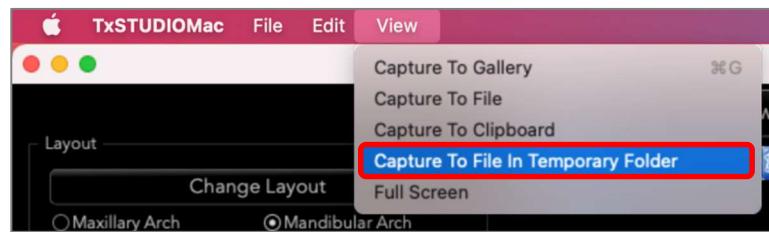
The software must be relaunched to apply the workflow changes.

Image Capture to File

To capture an image of the active display to file, click “View” → “Capture to File.” Browse to the location to save the image, type the name of the file, choose the file type on the “Save as type” drop-down, and click **Save**. The file can be saved as bmp, jpg, or png format. Jpg is the most popular file format for images, but there is a small amount of color degradation. Bmp preserves the image, but the file size is big. Png is an effective lossless format that does not degrade the color.


Image Capture to Gallery

Selecting “Capture To Gallery” or pressing $\text{⌘} + \text{G}$ will capture an image of the rendering window and save it to the Image List (see Gallery Tab features for additional information, pg. 131).


Image Capture to Clipboard

Selecting “Capture To Clipboard” will capture an image of the rendering window to the clipboard for pasting in other programs

Image Capture to File in Temporary Folder

Selecting “Capture To File In Temporary Folder” will capture an image of the rendering window to the temporary folder set in TxSTUDIOMac → Preferences. The image will always be named “Untitled.jpg”.

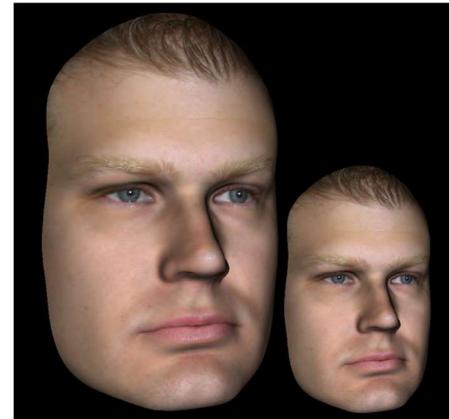


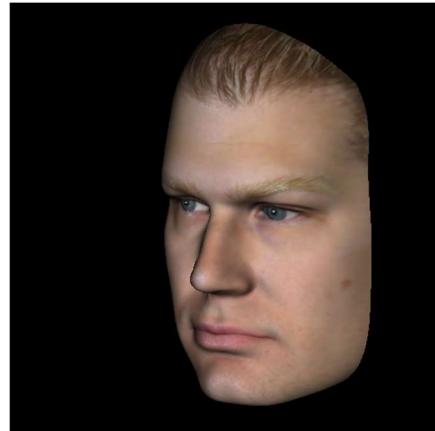
Image Navigation

Below is an explanation showing how to manipulate images in the rendering window with the keyboard and mouse.

Zoom In/Out

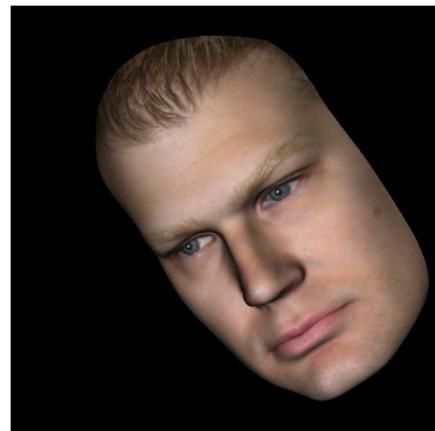
- Place the mouse cursor in the center of the image.
- Hold down the “⌘” key + left-button on the mouse.
- While holding down the buttons indicated above, move the mouse up and down on the screen.
- This shrinks/enlarges the image: Down vertically zooms out. Up vertically zooms in.

Pan (Shift)


- Place the mouse cursor in the center of the image.
- Hold down the “Shift” key + left-button on the mouse.
- While holding down the buttons indicated above, move the mouse any direction to achieve the desired image displacement.

Free Rotate

Applicable only for 3D images.


- Place the mouse cursor in the center of the image.
- Hold down the left-button on the mouse.
- While holding down the left-button, move the mouse in any direction to achieve the desired rotational position.

Free Rolling

Applicable only for 3D images.

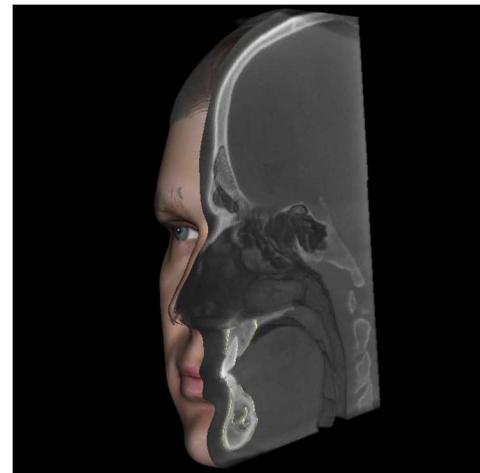
- Hold down the “Space” key + left-button on the mouse.
- While holding down the buttons indicated above, move the mouse up and down to rotate the image about a central axis.

Increment Rotate

Applicable only for 3D images.

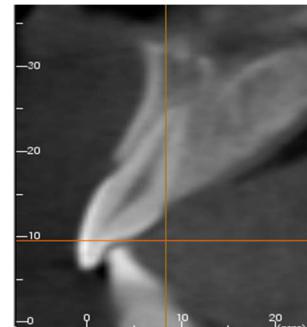
- Use the keyboard arrows $\leftarrow \uparrow \downarrow \rightarrow$ to rotate the 3D Model 1 degree up, down, right, or left, perpendicular to the computer screen.

Increment Roll

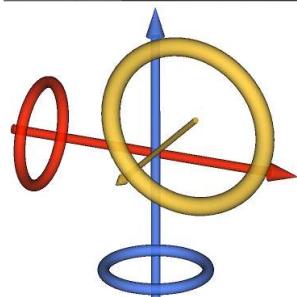

Applicable only for 3D images.

- Hold down the “⌘” key and use the keyboard arrows $\leftarrow \rightarrow$ to rotate the 3D Model 1 degree rolling left or right about a central axis. Pressing $\leftarrow \rightarrow$ without the ⌘ key pressed will roll the image left or right. Use $\uparrow \downarrow$ to roll the image up or down.

Anatomical Plane Clipping

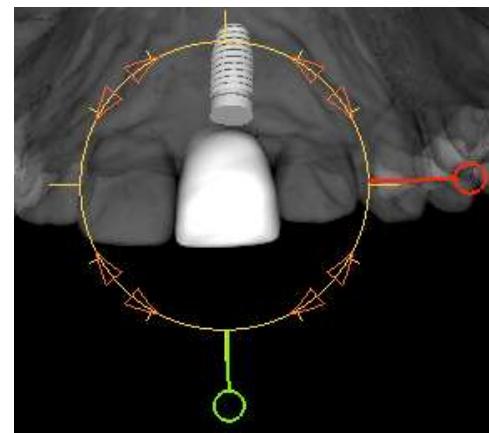

Applicable only for 3D images.

- Enable clipping in the Control Panel.
- Place the mouse cursor over the center of the image, then scroll the mouse wheel forward or backward to clip the anatomic plane as desired.


Scroll Slice

- For 2D views, place the mouse cursor in the center of the image then scroll the mouse wheel forward or backward to move one slice at a time.

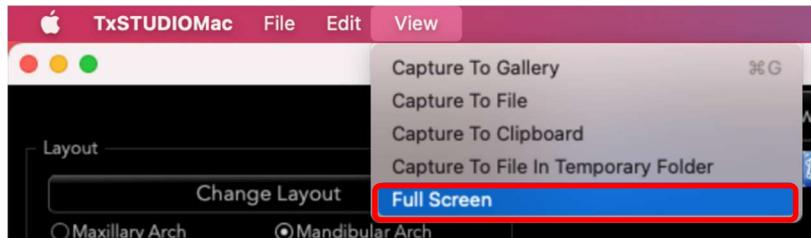
Move/Rotation Widget


- **Superimposition View:** Click on either the ring or the arrows circling the patient and move it in the direction to orient the patient.
- **Model View:** Use to move a model through a portion of the volume for simulation creation. Click on either the ring or the arrows circling the model and move/rotate it in the direction to move the model.

3D Restoration Widget

The 3D Restoration widget is designed to maximize visibility in the renderer and provide a high level of versatility in crown positioning and sizing. The resizing handles only appear when the camera perspective is within a range of angles that is relatively orthogonal to it.

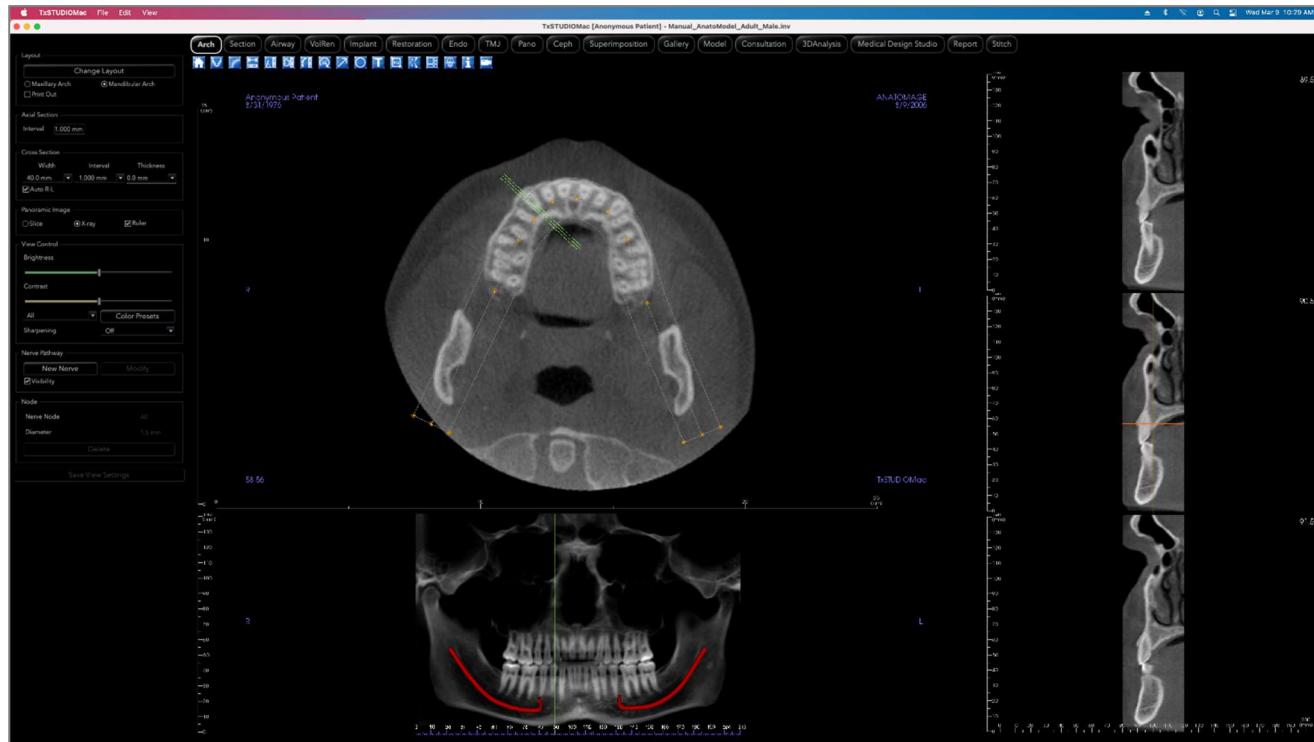
- The rotation circle appears on the same plane as the two resizing tools that are close to orthogonal to each other and the camera perspective and feature eight arrows for rotation.
- The red resizing handle can be selected and dragged toward/away from the crown to reduce/expand the mesiodistal size of the crown.
- The green resizing handle can be selected and dragged toward/away from the crown to reduce/expand the height of the crown.
- The blue resizing handle (not shown) can be selected and dragged toward/away from the crown to reduce/expand the buccolingual size of the crown.
- The crown can be clicked and dragged freely along a plane orthogonal to the camera angle.



Full Screen Mode

Below is an explanation pertaining to running the software in full screen mode.

Switching to Full Screen Mode


From the software menu, select “View” → “Full Screen.” To return to the normal screen mode, press the “esc” key on the keyboard.

The View Tabs:

ArchSection View Features

ArchSection View Tab is a sectional image exploration view. Instead of conventional X-Y-Z sections, this view allows the user to review the image in dentally meaningful perspectives using multiple cross sections, traversing the lengths of the dental arches.

ArchSection: Toolbar

Shown below are the Toolbar and tools that are loaded with the ArchSection Tab:

Reset: Resets the window to the original view.

Create Arch Spline: After selecting this tool, create a new arch spline or edit an existing arch spline. Left-click to place nodes along the arch. Right-click or double-click to finish the arch spline. To modify an existing arch spline, drag the nodes to the desired positions. To move the arch while maintaining its shape, click and drag the central spline.

Arch Spline Ruler: Places ruler along the arch spline for easy reference.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it.

Area Measurement: After selecting this tool, click multiple points along the boundary of the desired area. Double-click or right-click to end the measurement. A number in millimeters squared automatically displays. Click on the measurement and press the “fn” + “delete” keys to delete it.

Polyline Measurement: Select this option and mark any number of points in the slice view. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it.

Reorientation: Adjusts the patient orientation and the visible range of the scan.

Arrow Notation: Allows an arrow to be drawn on the image.

Circle Notation: Allows a circle to be drawn on the image.

Text Notation: Allows text to be written and edited on the image.

H.U. Measurement: Calculates the HU value of an area within a bounding rectangle, circle, or ellipse. The measurements will display alongside the shape and can also be repositioned by dragging. The information updates when the box is moved or if the user scrolls.

Rotate Cross Section: Adjusts the patient orientation in the cross sections.

Layout: After clicking on the layout icon, a list of various layout options appears. Click on the desired layout to apply it. A custom layout can be created and loaded.

Toggle Cursor Visibility: Conceals or displays cursors.

Information Display: Displays or hides case information embedded in the data.

View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the Volume Render View Sequence (pg. 64) section for additional information and description.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

ArchSection: Control Panel

Layout:

- **Change Layout** adjusts the layout with different numbers of slices and orientations. A custom layout can be configured. (See page **Error! Bookmark not defined.**)
- Maxillary Arch and Mandibular Arch options allow two different arch splines to be created and saved. Switching between the two options changes which spline is manipulated and used in creating the panoramic and cross sections.
- “Print Out” layout is optimized for printing the image on paper. With Print Out layout, the current view can be printed on the paper in life-size. First, capture to Gallery, then print from Gallery to ensure the image is life size.

Axial Section:

- Interval: Distance between the subsequent axial sections.

Cross Section:

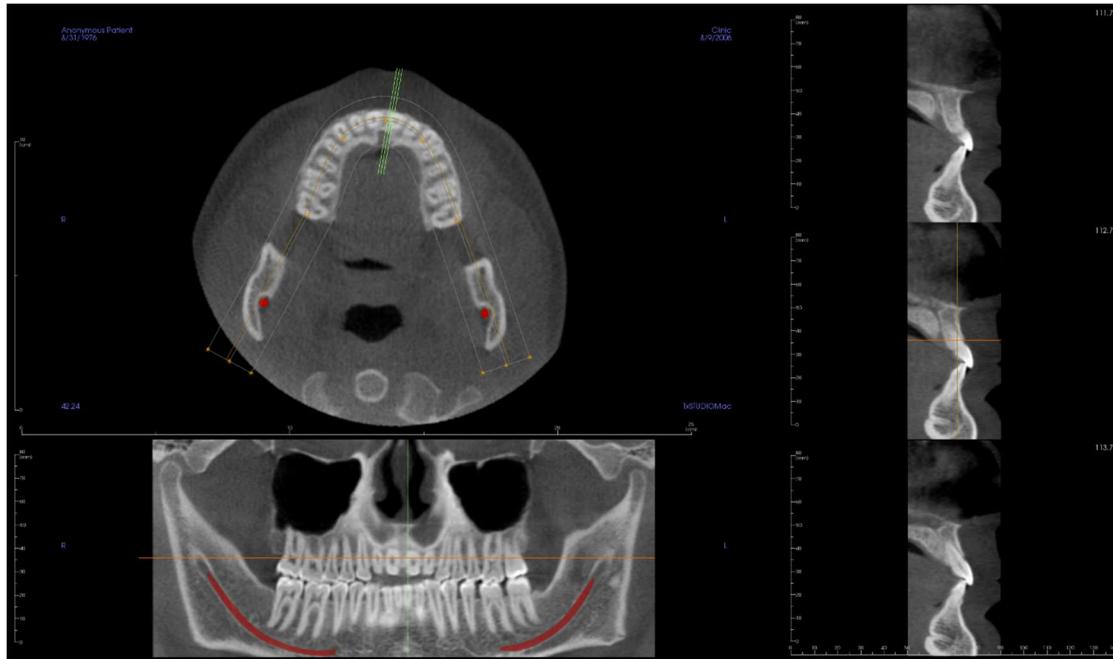
- Width: Cross-section width.
- Interval: Distance between the subsequent cross sections.
- Thickness: Allows for the cumulative thickness of the slices to be viewed in the cross sections.
- Auto R-L: This will allow the cross section to be oriented to a consistent R-L orientation on the screen. If turned off, the cross-section orientation will be consistent to the arch spline.

Panoramic Image:

- Slice mode displays a single cross section along the panoramic curve (yellow). This mode is used for tracing the nerve.
- X-ray will show the ray sum (reconstructed x-ray) in the focal trough.
- Ruler: Displays a ruler on the bottom of the panoramic image.

View Control:

- Brightness and Contrast can be used to adjust the image.
- The All drop-down allows for brightness/contrast adjustments in different areas independently.
- Different Color Presets can be used to view the images in color.
- Sharpening Filter applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.


Nerve Pathway:

- New Nerve: Starts a new nerve tracing.
- Modify: Allows editing of the selected nerve tracing.
- Visibility: Controls the visibility of the nerve in the section and X-ray renderers.
- Nerve Node: Select a specific node for modification.
- Diameter: Selects the diameter of the nerve that has been traced or a specifically selected node.
- Delete: Deletes the last placed node during the tracing or the entire nerve if Modify is active.

Save View Settings

- Saves the current 2D View settings to be reloaded upon opening any case. See the Display Preferences section in **Preferences** (pg. 17) for more information on which settings are saved for this specific tab.

ArchSection: Rendering Window

Arch Cursor: Notice the green, orange, and brown coordinate indicators. These ArchSection coordinate indicators show the spatial location within the ArchSection rendering window.

- **Cross Section Indicator:** The green lines give the location of the cross sections along the arch spline.
- **Axial Slice Indicator:** The orange line shows the axial coordinate position within the section.
- **Arch Spline:** The brown spline in the center of the arch spline represents the current position where the arch section has moved.
- **Cross Section:** Mouse scrolling within any one of the three sagittal frames advances the slices to the patient's right or left and causes the green coordinate indicator to move anteriorly or posteriorly in the axial and pano sections simultaneously. The up and down keys can also be used to scroll through cross sections by page.
- **Axial Section:** Mouse scrolling within the axial section advances the sections superiorly or inferiorly and causes the red coordinate indicator to move superiorly or inferiorly in the cross or pano sections simultaneously.
- **Pano Section:** Mouse scrolling within the coronal frame advances the slices buccally or lingually and causes the brown coordinate indicator to move buccally or lingually in the axial and cross sections simultaneously.

ArchSection: Creating A Nerve Pathway

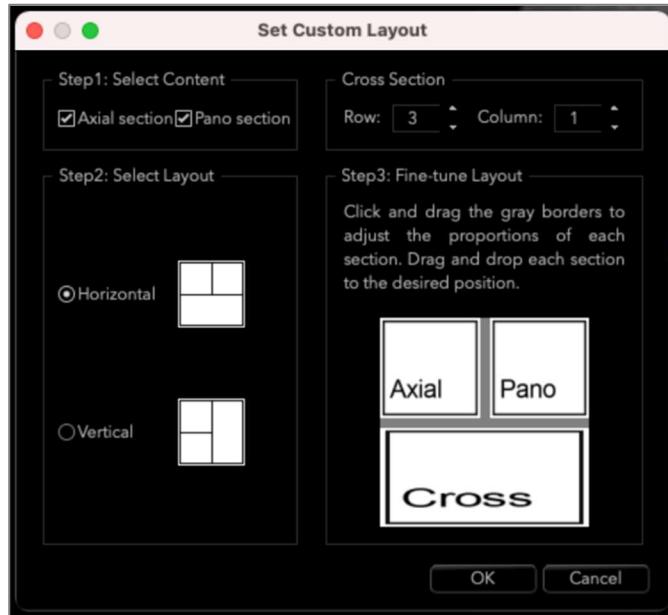
Creating a Nerve Pathway (e.g. Inferior Alveolar by following the mandibular canal to its exit).

- Click **New Nerve**.
- Left-click the mouse to start the nerve.
- Move the mouse to the next point along the nerve path and left-click again.
- Click **Delete** to remove the last-placed node if it is mispositioned.
- Repeat this procedure for the entire length of the nerve.
- **2.0 mm** is the default diameter of the nerve pathway, but the parameter can be adjusted as desired.
- Press **Done** to finish.

Editing a Nerve Pathway

- Click on a nerve tracing to select it. This highlights the nerve in a brighter red color.
- Click **Modify**. This reveals all of the nerve nodes that are visible in each slice in blue.
- Nodes can be moved by clicking and dragging it across the scan.
- Set the Nerve Node drop-down menu to “All” or a specific node.
- If “All” is selected, the entire nerve tracing’s diameter can be adjusted.
- If a single node is selected, it will be located in the slices, and its diameter and position may be adjusted independently. The nerve node diameter is adjusted in the Diameter drop-down menu.

Deleting a Nerve Pathway


- The **Delete** button can be used if a point was plotted in the wrong spot; it will delete the last point added.
- Once a nerve has been completed and **Done** has been clicked, the nerve can be deleted by clicking on it and pressing the “fn” + “delete” keys on the keyboard or the **Delete** button.

Warning: Any nerve that is traced in a way that does not conform to the actual pathway of the nerve can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based off of the incorrect tracing. It is critical for the end user to learn how to properly perform nerve tracings correctly. If you notice any inconsistencies or software problems with nerve tracing or have further questions or concerns about nerve tracing, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

ArchSection: Custom Layouts

A custom layout can be set by going to the **Layout** tool or **Change Layout**. Click **Set Custom Layout**.

Step 1.

Select whether the axial slice or the panoramic image should be visible. Set the number of columns and rows of cross sections. At least one cross section is always visible.

Step 2.

Select whether the main rendering window division is horizontal or vertical.

Step 3.

Click and drag the grey dividing borders to adjust the boundaries of each view. This affects the resulting size of each view.

Once **OK** is clicked, the custom layout is applied. If another layout is chosen subsequently, the custom layout can be reloaded by going to the **Layout** tool or **Change Layout** and clicking **Load Custom Layout**.

Section View Features

The **Section View Tab** gives the ability to view the X, Y, and Z sections (axial, coronal, sagittal) and user-created, custom sections simultaneously for 2D visualization, measurements, and the utilization of several image enhancement features. Invivo also integrates 3D functions in the Section View Tab.

Section: Toolbar

Shown below are the Toolbar and tools that are loaded with the Section View Tab:

Reset: Resets the rendering window to the original view size and the brightness and contrast to the preset.

Left: Automatically orients the volume so the patient is facing left sagittal.

3/4 Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

3/4 Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Angle Measurement: After selecting this tool, click the first point, then click the vertex, then click the last point to create an angle. A number in degrees will automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Area Measurement: After selecting this tool, click multiple points along the boundary of the desired area. Double-click or right-click to end the measurement. A number in millimeters squared will be automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Polyline Measurement: Select this option and mark any number of points in the slice view. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it.

Reorientation: Click this button to re-orient the image. A circle will show up in each section. Grab the arrow widgets and rotate the image to the desired orientation.

Arrow Notation: Allows an arrow to be drawn on the image.

Circle Notation: Allows a circle to be drawn on the image.

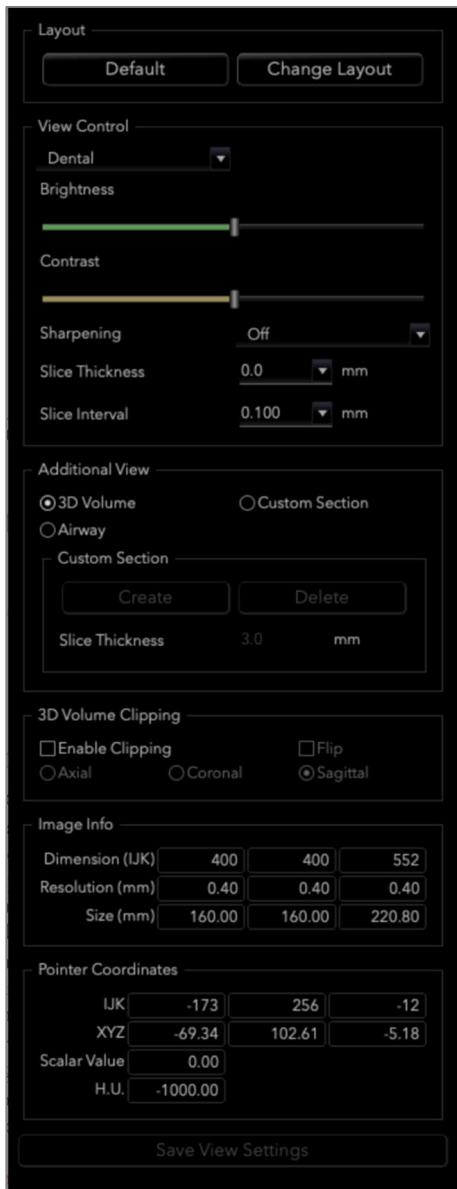
Text Notation: Allows text to be written and edited on the image.

H.U. Measurement: Calculates the HU value of an area within a bounding rectangle, circle, or ellipse. The measurements will display alongside the shape and can also be repositioned by dragging. The information updates when the box is moved or if the user scrolls.

Layout: After clicking on the layout icon, a list of various layout options appear. Click on the desired layout to apply it.

Toggle Cursor Visibility: Cycles through available cursor styles and turns cursor on and off.

Information Display: Displays or hides case information embedded in the data.



View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the **Volume Render View Sequence** section (pg. 64) for additional information and description.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Section: Control Panel

Layout:

- Default: Reset to the original layout.
- Change Layout: Click to choose custom layout.

View Control:

- Brightness & Contrast: Can be adjusted for each of the presets to enhance the image. Clicking and dragging the mouse up/down on the 2D views will increase/decrease the brightness. Clicking and dragging the mouse right/left on the 2D views will increase/decrease the contrast.
- Rendering Preset (drop-down list): The presets either load a brightness/contrast setting that is optimized for a particular tissue type or a color preset.
 - Dental (custom), Abdomen, Bone, Brain CT, Liver, Lung, Mediastinum, and Grayscale.
 - Color Presets: Allows better visualization of certain anatomic structures, soft tissue profiles, airway, etc. The color rendering is only for visualization. **The colors are based on densities but DO NOT represent the density value of the bone.**

- Sharpening Filter: Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.
- Slice Thickness: Uses ray sum when reconstructing the 3D image along each orthogonal plane.
- Slice Interval: The user may also define the Slice Interval by selecting a drop-down option between 0.1-20.0 mm or by manually entering a number within that interval on the keyboard.

Additional View:

- 3D Volume: This option allows 3D volume rendering in the fourth corner of the window.
- Custom Section: This option allows for the creation of a custom section.
- Airway: This option displays the airway in the 2D slices and as a 3D model if present in the case.

Custom Section:

- Click **Create** to start a custom section. By clicking two points, a customized section can be created on any cross section to better visualize anatomy along that axis. The custom section can be navigated by clicking and dragging the arrows to rotate, the endpoints to lengthen, or the center point to drag the entire section freely.
- **Delete:** Removes the custom cross section made in the rendering window.
- Slice Thickness: Adjusts the slice thickness of the custom section. Slice thickness can also be adjusted using the circular handles flanking the center of the section.

3D Volume Clipping:

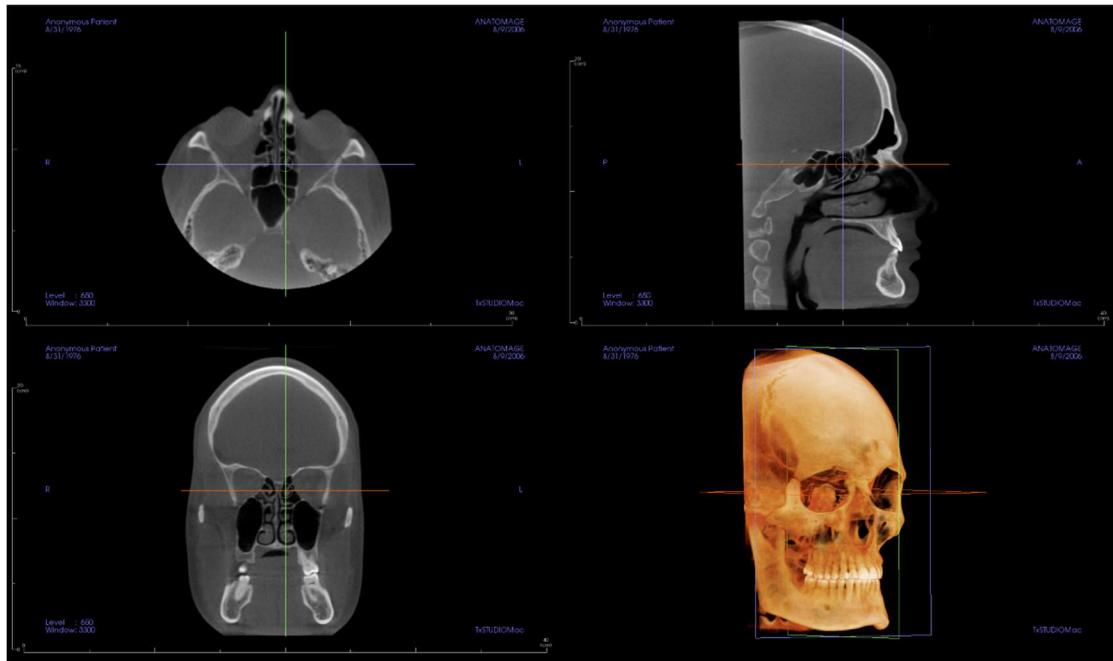
- When 3D volume is enabled, this option clips the volume for viewing the internal anatomy. The

clipping plane is synchronized with section cursors.

Image Info:

- Dimension, resolution, and field of view size are summarized.

Pointer Coordinates:


- IJK or XYZ: coordinates give the user the ability to examine the coordinate of the cursor upon the absolute coordinate system.
- Scalar Value is the gray scale value of the voxel pointed by the cursor pointer. H.U. or Hounsfield unit, is an approximate value of the voxel calculated by “Rescale Slope” and “Rescale Intercept” in DICOM information. *H.U. value approximations may not be as accurate if your CT hardware calibration is off. Contact your hardware manufacturer for more information about H.U. accuracy.*

Save View Settings

- Saves the current 2D View settings to be reloaded upon opening any case. See the Display Preferences section in **Preferences** (pg. 17) for more information on which settings are saved for this specific tab.

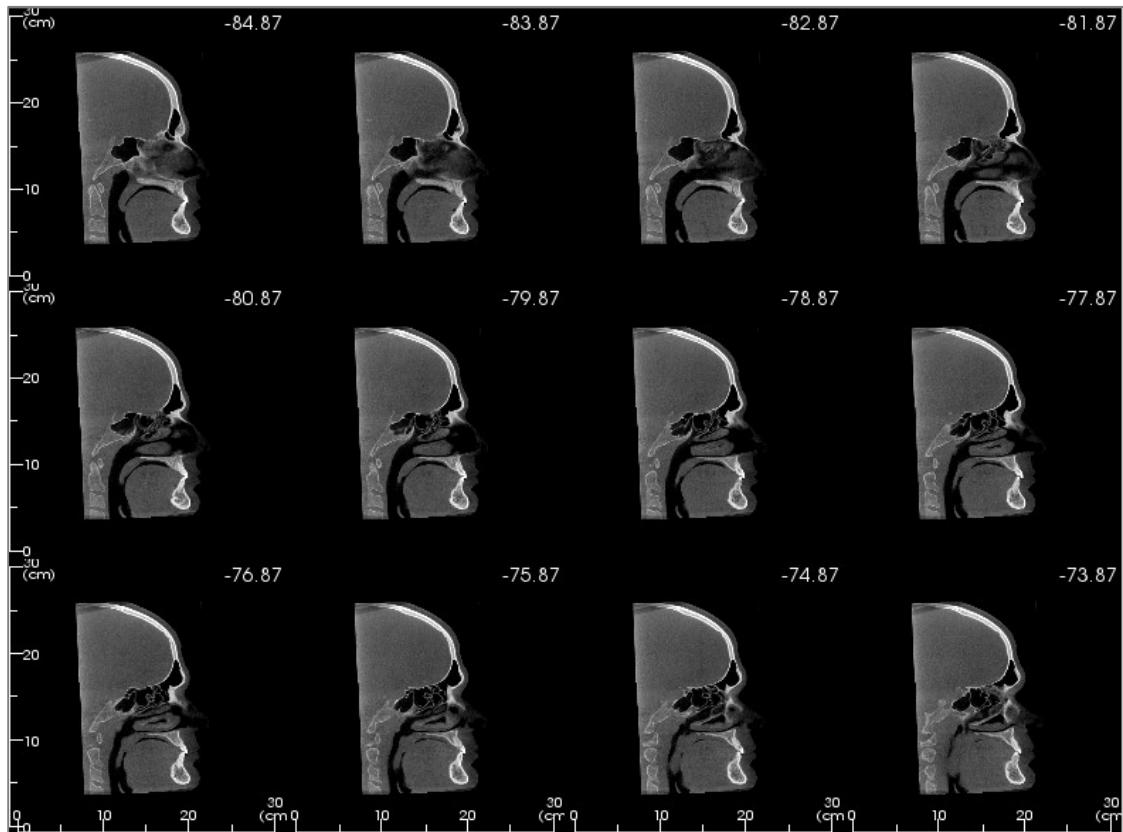
Section: Rendering Window

This window allows viewing of the X, Y, and Z sections (axial, coronal, sagittal) and custom sections or a 3D view simultaneously. This allows the clinician to have very accurate 2D visualization and 2D measurements.

Scroll wheel: Move mouse pointer to the desired cross section. Use the scroll wheel to move the slice up and down.

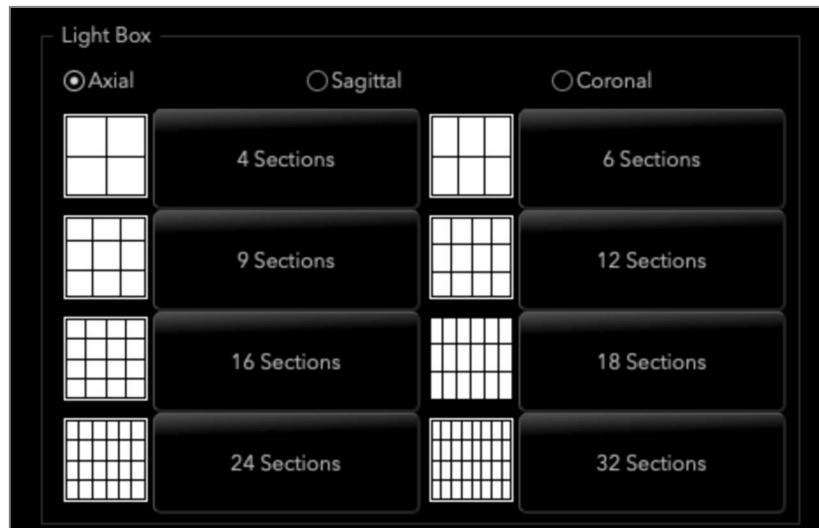
Cursor: Grab one of the cursors (axial, sagittal or coronal). Move the cursor in the desired direction. The corresponding image will be updated.

Center Circle: Pick a point inside the center circle. Move the circle in the desired direction. The other two images will be updated.

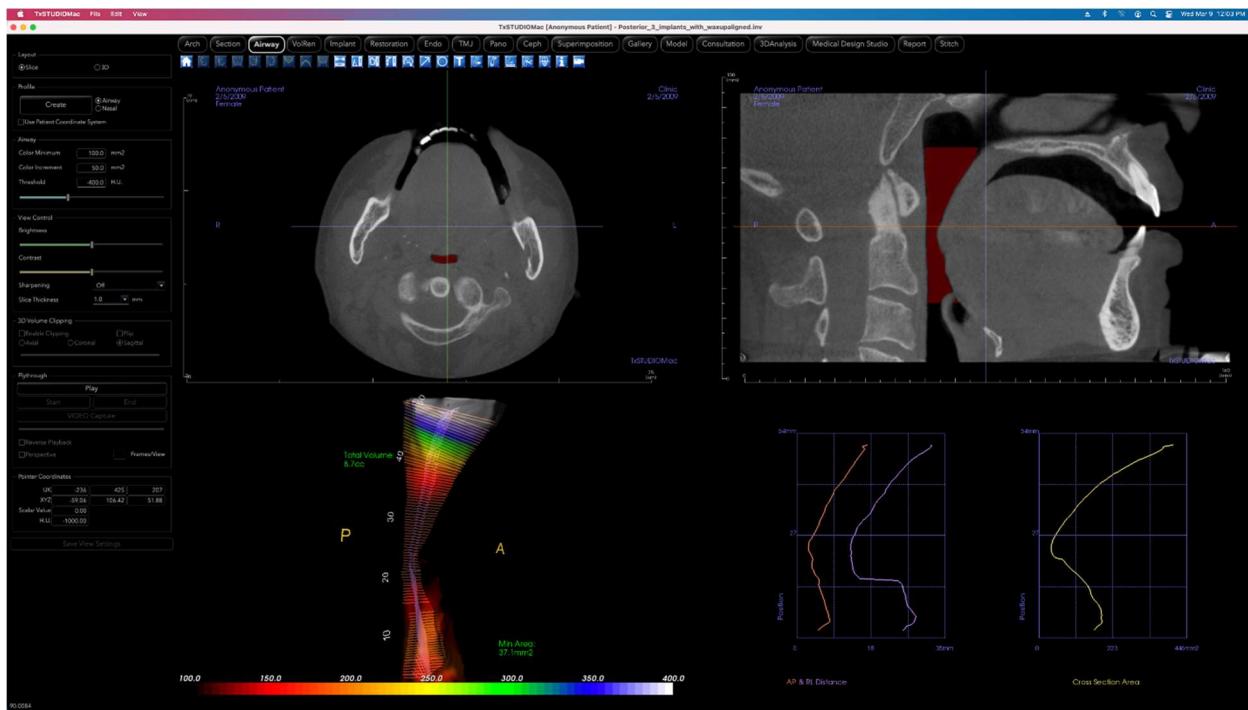

Zoom: Click and hold the left-click mouse button on the image and the “⌘” key on the keyboard. Drag the mouse cursor up and down to zoom in and out.

Pan: Click and hold the left-click mouse button on the image and the “Shift” key on the keyboard. Drag the mouse cursor to move the image.

Brightness: Click on a slice in the axial, sagittal, and coronal views and drag the mouse to adjust the brightness and contrast. Dragging the mouse up/down will increase/decrease the brightness.


Contrast: Click on a slice in the axial, sagittal, and coronal views and drag the mouse to adjust the brightness and contrast. Dragging the mouse left/right will increase/decrease the contrast.

Section: Light Box


Change Layout has the option to change the Section view format to a “Light Box” style.

- The Light Box is composed of 4-32 sections of either axial, sagittal, or coronal views.

Airway View Features

The **Airway Tab** visualizes and assesses the properties of the patient's airway and nasal cavity and provides additional tools for data export and presentations.

Airway: Toolbar

Shown below are the Toolbar and tools that are loaded with the Airway View Tab:

Reset: Resets the rendering window to the original view size and the brightness and contrast to the preset.

Left: Automatically orients the volume so the patient is facing left sagittal.

¾ Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

¾ Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Angle Measurement: After selecting this tool, click the first point, then click the vertex, then click the last point to create an angle. A number in degrees will automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Area Measurement: After selecting this tool, click multiple points along the boundary of the desired area. Double-click or right-click to end the measurement. A number in millimeters squared will be automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Polyline Measurement: Select this option and mark any number of points in the slice view. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it.

Reorientation: Click this button to re-orient the image. A circle will show up in each section. Grab the arrow widgets and rotate the image to the desired orientation.

Arrow Notation: Allows an arrow to be drawn on the image.

Circle Notation: Allows a circle to be drawn on the image.

Text Notation: Allows text to be written and edited on the image.

Export Airway Data: If an airway has been generated, this exports the airway model, graphs, slice data, and summary data to the selected folder.

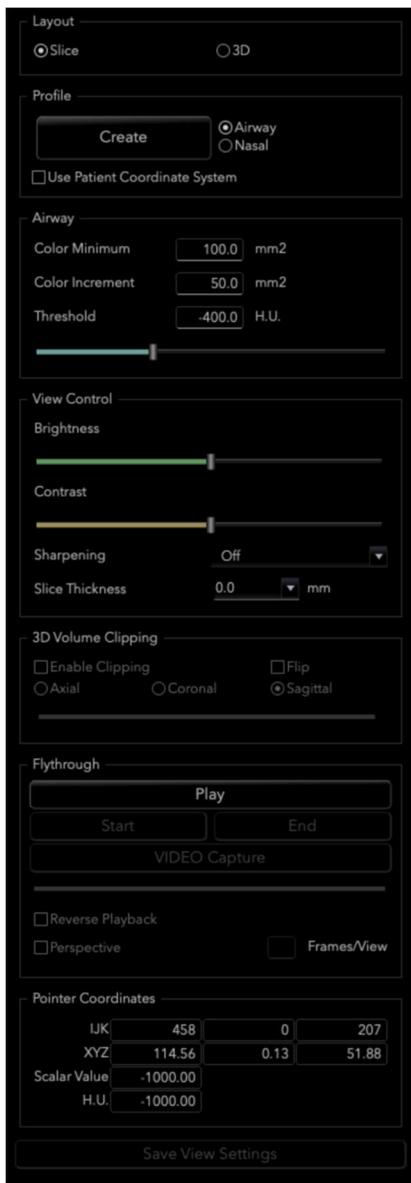
Airway Measurement: Trace the airway spline and calculate the volume, A-P and R-L distances, cross-sectional area, and minimum cross-sectional area. (See pg. 120.)

Nasal Measurement: Trace the nasal cavity spline and calculate the volume, A-P and R-L distances, cross-sectional area, and minimum cross-sectional area.

Airway Sculpting: Freely outline an area and remove the part of the airway perpendicular to the plane of the screen. The airway inside or outside the selection can be chosen by clicking in the respective areas.

Toggle Cursor Visibility: Cycles through available cursor styles and turns cursor on and off.

Information Display: Displays or hides case information embedded in the scan data.



View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the View Sequence description in the Volume Render View section (pg. 64)

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Airway: Control Panel

Layout:

- **Slice:** Displays the axial and sagittal slices along with the 3D airway model and graphs if the selected profile is present.
- **3D:** Displays the sagittal slice and 3D volume rendering along with the 3D airway model and graphs if the selected profile is present.

Profile:

- **Create:** Create a spline by clicking to place nodes along the direction of the flow of air. Right-click to finish the spline and generate the measurement. (See pg.120.)
- After creation, the profile can be modified by clicking on it and editing the spline in the sagittal slice.

Airway:

- **Color Minimum:** The minimum cross-sectional area that will have color, starting with red. Any areas smaller than that will be in black.
- **Color Increment:** How quickly color changes with cross-sectional area changes.
- **Threshold:** The maximum H.U. threshold that the software detects as air. The value in the field defines the central threshold of the slider.

View Control:

- **Brightness & Contrast:** Can be adjusted for each of the presets to enhance the image.
- **Sharpening Filter:** Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.
- **Slice Thickness:** Uses ray sum when reconstructing the 2D image along each orthogonal plane.

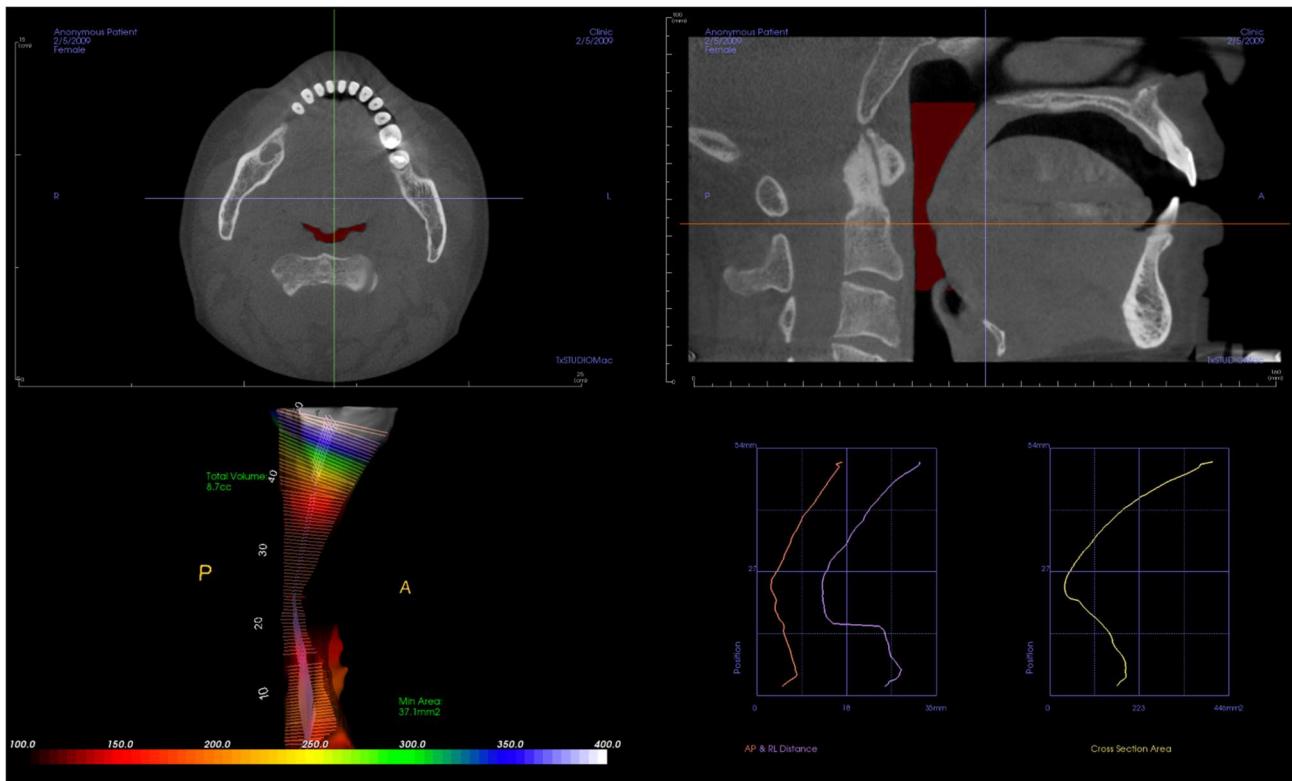
3D Volume Clipping:

- When the 3D layout is applied, this option clips the volume for viewing the internal anatomy. The clipping plane can be adjusted with the mouse scroll wheel.

Flythrough:

- **Play:** Create a flythrough simulation of the airway.
- **Start/End:** Jumps to the start or end position of the simulation.
- **VIDEO Capture:** Exports the flythrough simulation as a video file.
- **Reverse Playback:** Reverses the direction of the flythrough.
- **Perspective:** Toggles on perspective projection.
- **Frames/View:** Sets the number of frames for each view.
- See page 120 for more information.

Pointer Coordinates:


- IJK or XYZ: coordinates give the user the ability to examine the coordinate of the cursor upon the absolute coordinate system.
- Scalar Value is the gray scale value of the voxel pointed by the cursor pointer. H.U. or Hounsfield unit, is an approximate value of the voxel calculated by “Rescale Slope” and “Rescale Intercept” in DICOM information. *H.U. value approximations may not be as accurate if the CT hardware calibration is off. Contact the hardware manufacturer for more information about H.U. accuracy.*

Save View Settings

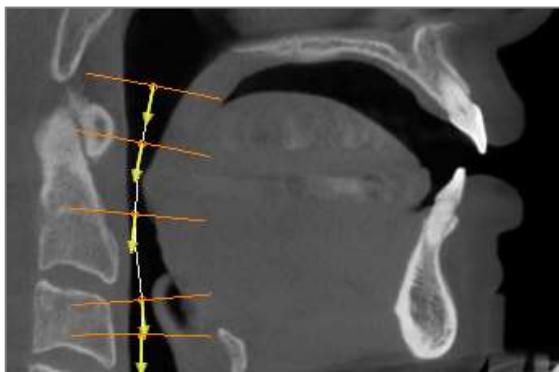
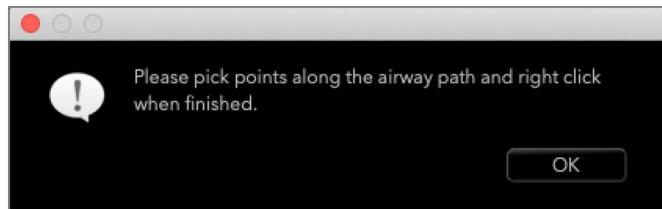
- Saves the current 2D View settings to be reloaded upon opening any case. See the Display Preferences section in **Preferences** (pg. 17) for more information on which settings are saved for this specific tab.

Airway: Rendering Window

This window displays the axial and sagittal 2D slices along with the 3D volume, model object, and graph data depending on the layout selection and if an airway or nasal cavity has been created.

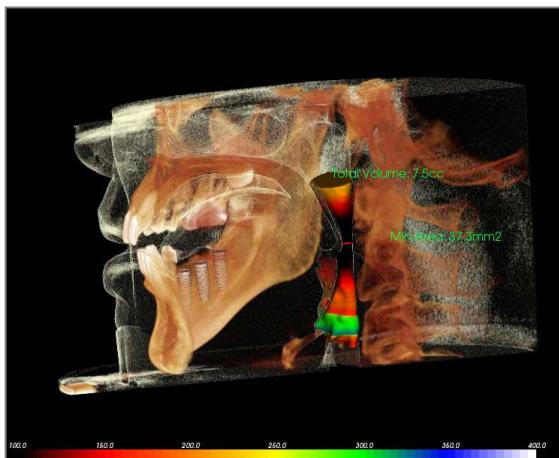
Slice view: Axial and sagittal slices are available. Airway measurement is created in the sagittal slice. Profiles are displayed after measurement creation. Clicking on the airway subsequently displays the edit widget.

3D volume view: The 3D volume can be manipulated as in other tabs. If an airway measurement is present, a 3D volume is displayed.



Airway model view: The 3D airway object can be manipulated similarly to the volume rendering. Total volume and minimum area values are displayed.

Graphs: Anterior-posterior and right-left measurements and the cross-sectional areas of each slice of the airway are graphed relative to position along the airway spline. Click on the area of the graph to find the corresponding slice in the airway and display specific numerical data.

Airway: Airway Measurement



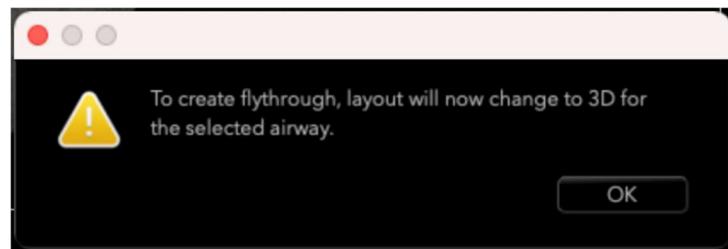
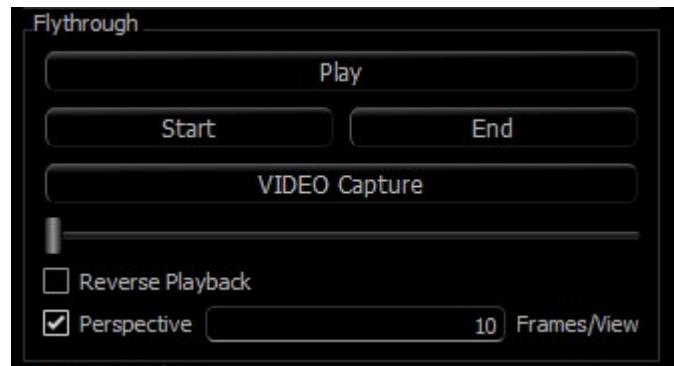
Airway Measurement: Selecting the icon will prompt the dialog box below. Click **OK** to continue.

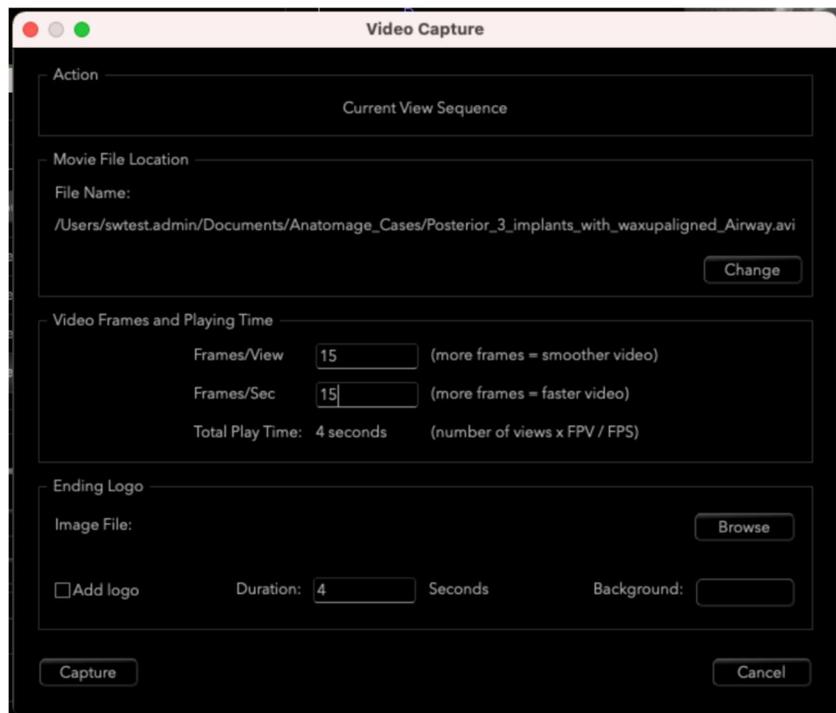
Tracing the Profile:

- Use the scroll-wheel to locate the mid-sagittal plane.
- Pick points along the airway to define the measurement path with the left-click button.
- Right-click when finished.

Viewing the Volume Measurement:

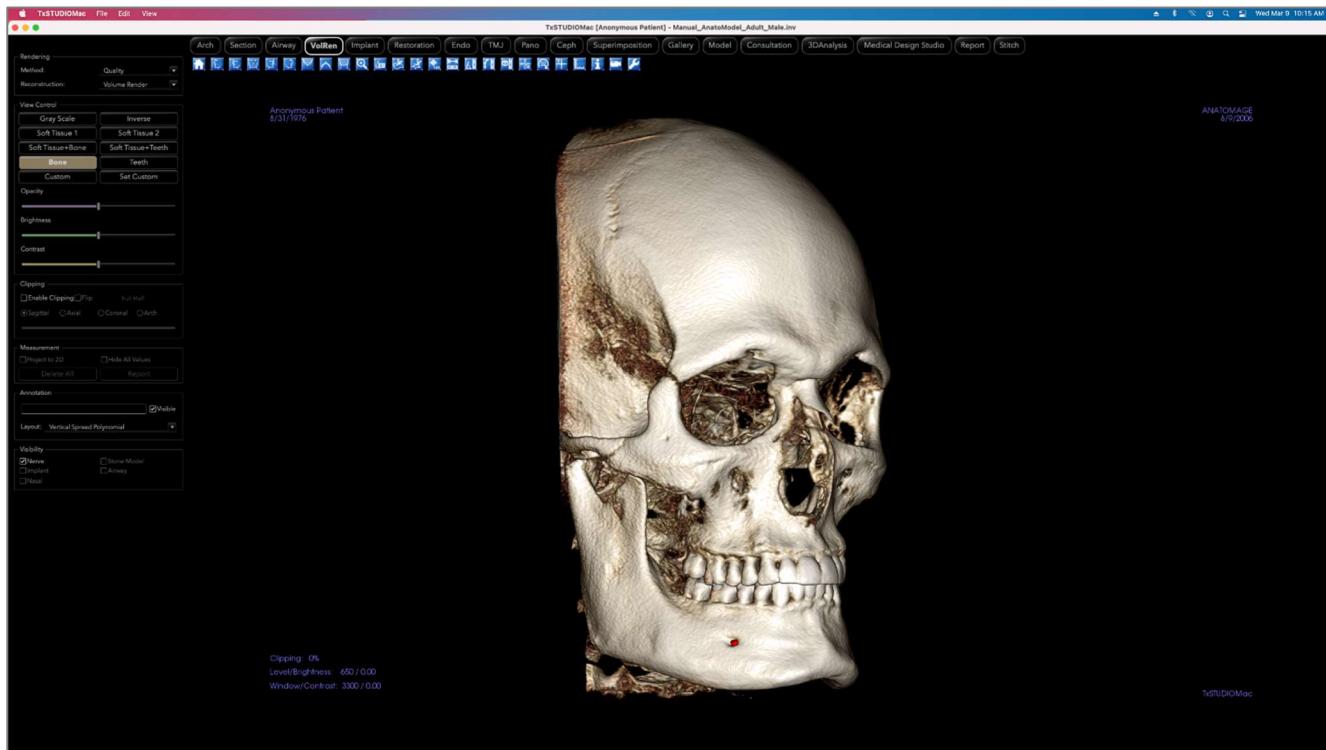
- Invivo converts the profile tracing into a volume rendering and superimpose it onto the scan data.
- The minimum cross-sectional area and total volume are displayed next to the airway measurement.
- The color range and threshold can be adjusted in the Control panel.
- The measurement data can be hidden by checking the box for “Hide All Values” in the Control Panel.
- The airway volume and measurement values can be deleted by left-clicking once on the volume, then pressing “fn” + “delete” on the keyboard.



Important: The measurement values may not be true anatomical volumetric measurements. Due to the nature of the imaging, there are imaging artifacts such as white noise, scattering, beam hardening, ring noise or off scale H.U. The software measurement tool cannot distinguish the imaging artifact from the true anatomy. Furthermore, the measurement value depends on threshold values; thus, user must set proper thresholds to get the best estimate of the desired structure. The measurements must not be used as the sole metric for any treatment.


Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Airway: Flythrough

After the creation of an airway or nasal cavity measurement, a flythrough simulation can be created. Click “Play” in the Flythrough section of the Control panel. A view sequence following the airway spline is automatically generated. The sequence can be played and reversed, and the speed and smoothness can be adjusted through the Frames/View parameter. Perspective camera view can be toggled on if desired.



Once the sequence is adjusted, it can be exported as a video file through the “VIDEO Capture” button.

Volume Render View Features

The **Volume Render Tab** shows the patient in three-dimensionally reconstructed views and allows for the exploration of internal structures and never-before-seen views of the patient.

Volume Render: Toolbar

Shown below are the Toolbar and tools that are loaded with the Volume Render View Tab:

Reset: Resets the rendering window to the original view size.

Left: Automatically orients the volume so the patient is facing left sagittal.

3/4 Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

3/4 Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Quick Zoom: Click the zoom icon, then the point on the volume to zoom in. Use Reset View icon to go back to normal size.

Slice Explorer: Once activated, clicking on a point on the volume will open a 2D zoom window in that location. The zoom window can be scrolled through using the mouse wheel.

Freehand Sculpture: Freely outline an area and remove the volume perpendicular to the plane of the screen. The volume inside or outside the selection can be chosen by clicking in the respective areas.

Polygon Sculpture: Outline an area by placing a series of points and right-clicking. The volume perpendicular to the plane of the screen will be removed. The volume inside or outside the selection can be chosen by clicking in the respective areas.

Marker: Select this option to mark a point on the volume and X, Y, Z coordinates (axial, sagittal, vertical) will appear. Clicking on the point and moving the cursor can modify points. Click on the point and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be hidden or exported to a report.

Distance Measurement: Select this option and mark two points on the volume and distance will appear. Clicking on the point and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Polyline Measurement: Select this option and mark any number of points on the volume. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Volume Measurement: This button will open the volumetric measurement window.

Quick Measurement: Click to activate a ruler at the tip of the cursor. Click again to turn off.

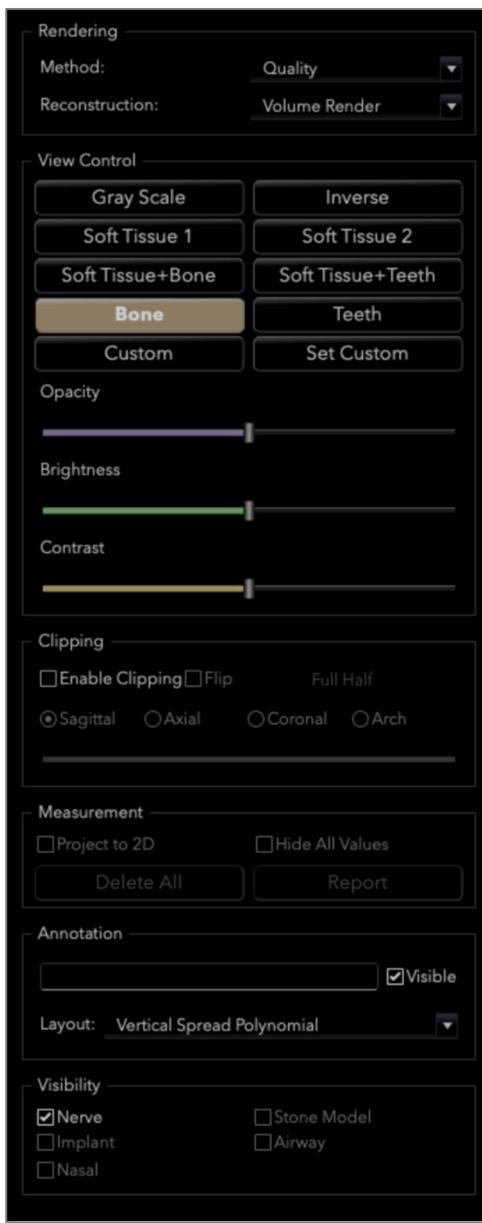
Reorientation: Change the patient orientation. See page 62.

Comment Marker: Pick a point in the volume and enter comments. Type the desired text label and press **OK**.

Grid: Toggles between four different grid layouts for simple assessment of size, measurement, and spatial location.

Information Display: Displays or hides case information embedded in the scan data.

View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the View Sequence description in the Volume Render View section (pg. 64).



Settings: Allows option to view either parallel or perspective views in 3D.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Volume Render: Control Panel

Rendering:

Different methods of rendering can be selected as needed.

- Method: “Performance” is fast but there are some rendering artifacts. “Quality” gives the highest level of detail, but response is slower. “Default” is in between the other two options.
- Reconstruction: There are three possible reconstruction methods: Volume Render, Maximum Intensity Projection, and X-ray.

View Control:

- Color Presets: Gray Scale, Inverse, Soft Tissue 1, etc. allow better visualizations of certain anatomic structures, soft tissue profiles, airway, etc. This is achieved by displaying specific densities with specific colors.
- Opacity: Allows for the translucency/opacity to be adjusted.
- Brightness & Contrast: Can be adjusted for each of the presets to enhance the image.

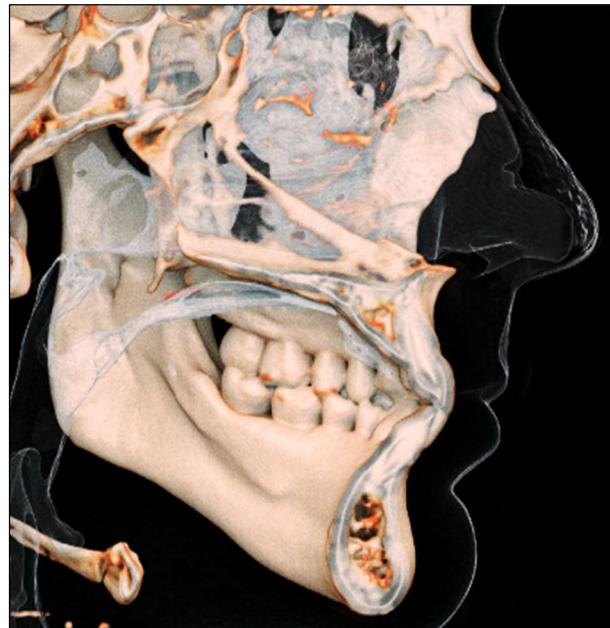
Clipping:

- Click the “Enable Clipping” box to slice the image along the predefined anatomical planes (sagittal, axial, coronal, and arch).
- Scrolling the mouse wheel or slider will move the clipping plane.
- To switch a view to the opposite side, click “Flip.”

Measurement:

- Measurements can be projected as 2D values or hidden by clicking the appropriate box.
- **Delete All** will delete all measurements within the rendering window.
- **Report** exports the values and annotations to a .CSV file for viewing and/or performing computations as a spreadsheet.

Annotation:


- Edits selected comment/annotation in the text field.
- Toggle added comments on/off by selecting “Visible.”
- Layout: Sorts all added comments in the rendering window based on selected setting (Horizontal, Stick to Point, User Dragged, Vertical, Vertical Spread Straight, Vertical Spread Polynomial).

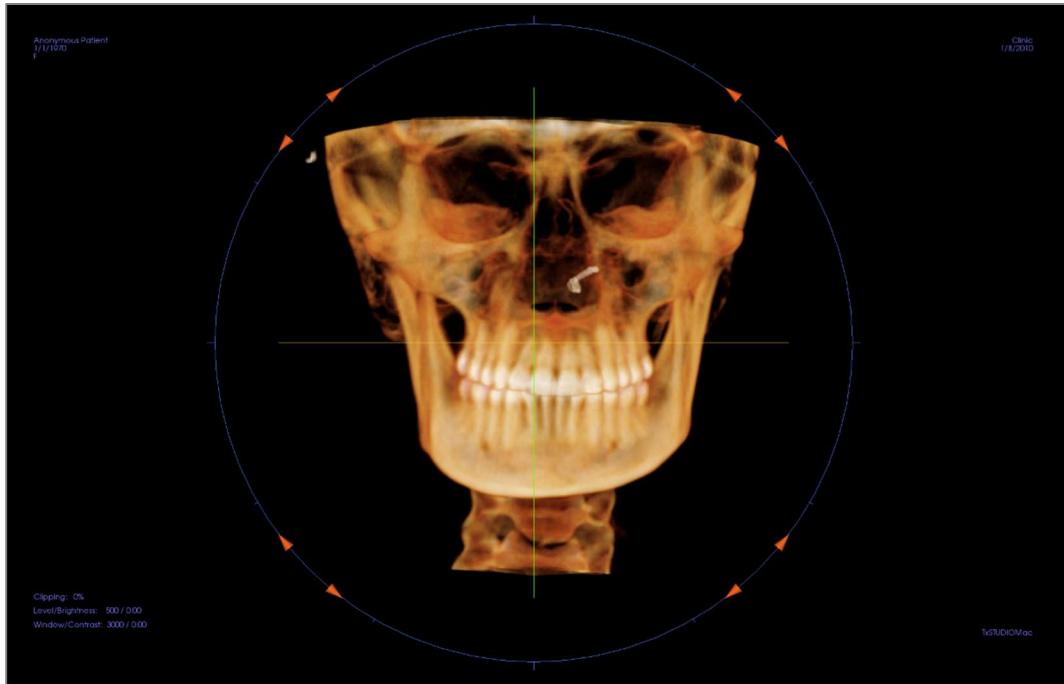
Visibility:

- Nerves, Stone Models, Implants, etc. visibility can be toggled on and off.

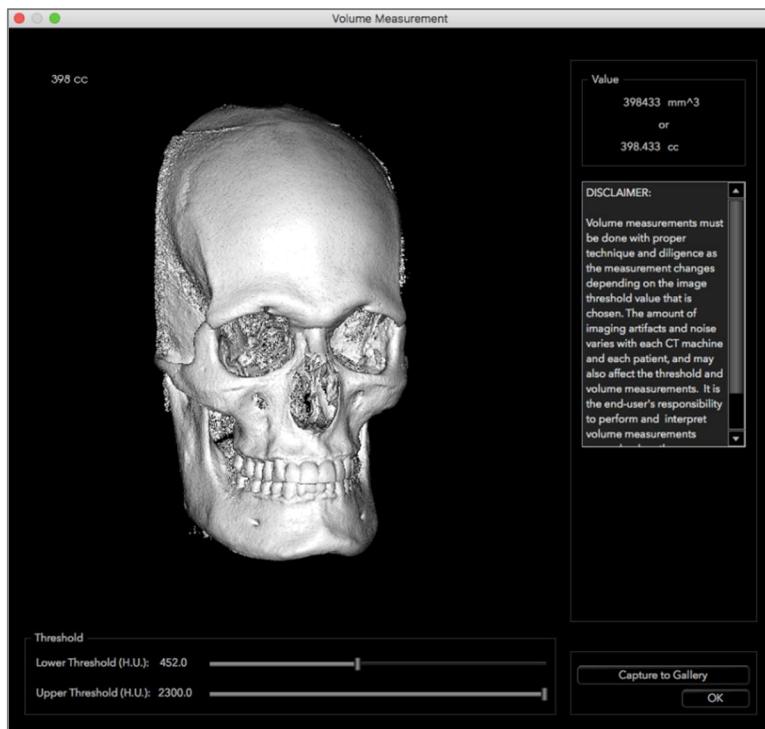
Volume Render: Rendering Window

One of the most powerful features of Invivo is the remarkable rendering quality and speed at which the software works. The simplicity of this window is that it only displays the volume, patient information (if desired), and the opacity, brightness, and contrast values.

Please refer to **Image Navigation (pg. 30)** for information about controlling and adjusting these images.



Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com


Volume Render: Reorientation

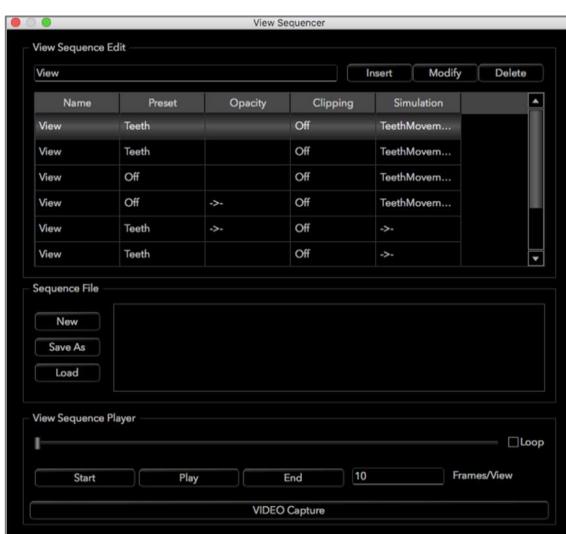
The reorientation tool provides the user a way to orient the volume using references lines as well as to reset the image to the default coordinate system.

- After selecting the reorientation icon in the toolbar, left-click and drag each reference line to the approximate proper location on the volume (ex. Frankfort Horizontal in sagittal view).
- If the patient orientation had previously been adjusted, the tool provides the options to reset to the default orientation of the scan or to adjust the current orientation.
- Left-click and drag the rotation handles to rotate the volume to match the reference line.
- Rotate the volume to visualize the rotation widgets on the other axes.

Volume Render: Volume Measurements

The Volume Measurement tool can be used to estimate displaced volume (cc or cubic millimeters) of a specific anatomical structure. The desired anatomical structure must first be isolated by sculpting.

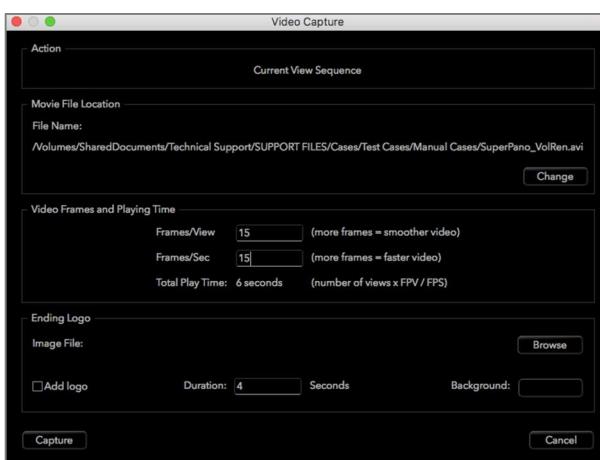
Then, press the **Volume Measurement** button. A new window opens, and the volumetric measurement value is displayed. Finally, the threshold values can be adjusted to obtain desired measurements. The volume measurement function is linked to rendering; the Inverse rendering preset can be used to take volumetric measurements of air.



Important: The measurement values may not be true anatomical volumetric measurements. Due to the nature of the imaging, there are imaging artifacts such as white noise, scattering, beam hardening, ring noise or off scale H.U. The software measurement tool cannot distinguish the imaging artifact from the true anatomy. Furthermore, the measurement values depend on threshold values; thus, user must set proper thresholds to get the best estimate of the desired structure. The measurements must not be used as the sole metric for any treatment.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Volume Render: Movie Capturing and Customized View Sequences



View Sequence:

- Create sequences by clicking on **Insert** for each step the volume transitions through.
 - For a movie that spins the volume left to right, and then turns up for a submental view, a frame should be inserted for each major view, and the View Sequencer connects the positions in a seamless movie.
- Multiple, different rendering presets can be integrated so that the sequence changes not only in position but also in colorizations.
- Video sequences can be saved for future use and then loaded using the **Load** and **Save As** buttons under Sequence File.
- Click on **VIDEO Capture** to open a dialog to customize and save the movie file.

Movie Capture:


The **VIDEO Capture** button allows for customization, capturing, and exporting of an AVI (movie) file of the volume rendering sequence.

- Select **Change** to determine the AVI file name and save location.
- Set the frames/view and frames/sec to desired values.
 - More frames/view make the video smoother.
 - More frames/sec make the video run faster.
- Add an ending logo by selecting **Browse** and choosing an image file to display at the end of the video.
 - Select "Add Logo" to add the ending image.
 - Set the duration and background color.
- Click **Capture** once everything is set up to automatically export the video to the specified location with the specified name.

Implant View Feature

The **Implant View Tab** contains the full-featured implant planning module.

Implant: Toolbar

Shown below are the Toolbar and tools that are loaded with the Implant View Tab:

Reset: Resets the rendering window to the original view.

Left: Automatically orients the volume so the patient is facing left sagittal.

¾ Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

¾ Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Distance Measurement: Select this option and mark two points on the volume and distance will appear. Clicking on the point and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features in Volume Render Tab allow the values to be projected to 2D, hidden, or exported to a report.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features in Volume Render Tab allow the values to be projected to 2D, hidden, or exported to a report.

Text Notation: Allows text to be written and edited on the image.

Comment Marker: Pick a point in the volume and enter comments. Type the desired text label and press **OK**.

Add Implant: Select the Tooth ID for the implant, mouse over the implant site, and left-click the mouse to place the implant. Note: specific manufacturers measure the implant from different points, so a measurement in the software might not be the same as the actual measurement of the specific implant design.

Toggle Move Widget: Toggles the implant orientation widget on and off.

Implant Angle Dialog: Opens a window displaying all the angles between placed implants. If an angle is clicked, the volume is rotated to view the angle, and the relevant implants are highlighted.

Density Profile Control: Adjust the settings for the displayed density profile around planned implants.

Treatment Lock: Locks the implants in place so that they are not accidentally moved when viewing the 3D images.

Check Sleeves: The program will search for collisions between the sleeves, instruments, and stone models.

Bone Graft: Simulates a bone graft near the apex of an implant and displays its volume.

Change Model Visibility: Allows various models to be turned on or off from view.

Create Summary: Creates an Implant summary of images that is added to the Gallery. Images contain ID (FDI), implant product, diameter, and length information in the lower right hand corner of the screenshot. The user will also be given an option to print a reference chart which lists the implants placed (including implant site, manufacturer, product name, diameter and radius) for each arch.

Layout: Toggles the rendering window layout.

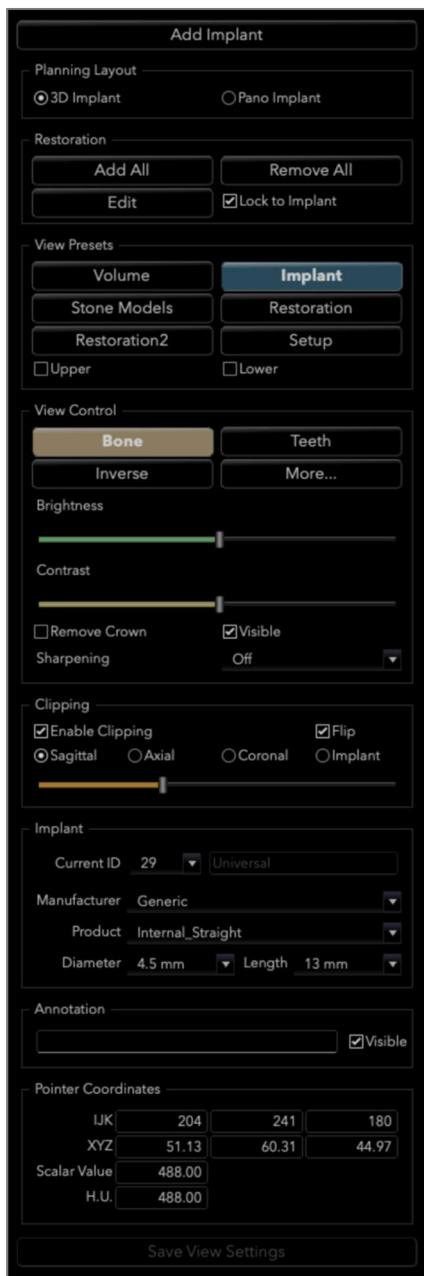
Grid: Toggles between two different grid layouts for use in the upper two section frames allowing quick assessment of measurements and spatial location.

Information Display: Displays or hides case information embedded in the data.

View Sequence: Opens a dialog that provides view sequence presets to create a video.

Settings: Adjust the tooth system type, clipping preferences, collision and surrounding parameters, rendering quality object colors, and implant library settings.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com



Warning: Any implants and restorations that are incorrectly visualized in Restoration Design Studio may lead to surgical complications or treatment delays. If you notice any inconsistencies or software problems with implant or restoration planning or have further questions or concerns, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

Warning: Any implant planning that is performed incorrectly in any aspect including but not limited to implant location, orientation, angle, diameter, length, and/or manufacture can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based off of the implant planning error(s) in question. It is critical for the end user to learn how to use the implant treatment planning tools correctly. If you notice any inconsistencies or software problems with implant planning or have further questions or concerns about correct utilization of implant planning, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

Implant: Control Panel

Add Implant:

- Select one or more implants for placement.
- Maxillary and mandibular parallelism can be enabled.
- Place each implant in the 3D volume.
- Adjust the implant orientation and placement using the move widget that appears on the selected implant.

Planning Layout:

- 3D Implant: Place and adjust individual implants on 3D volume and 2D slices.
- Pano Implant: Click and drag implants into the panoramic image. Selective parallelism can be configured in this view.

Restoration:

- **Add All:** Adds default restorations to all the implants.
- **Remove All:** Removes all restorations.
- **Edit:** Transfers the current progress to the Restoration Tab for advanced crown placement and design. See the **Implant: Advanced Restoration Design** section (pg. **Error! Bookmark not defined.**) for more information.
- Lock to Implant: When selected, the implant and restoration move as a single unit.

View Presets:

- **Setup:** Opens a dialog where the view presets can be configured.
- **Presets:** Preset toggles that display the selected features as configured in the **Setup**.
- **Upper/Lower:** Toggles the visibility of the stone models if present.

View Control:

- Rendering Types: Different settings allow for better visualization of certain anatomic structures, soft tissue profiles, hard tissue, etc. This is achieved by displaying specific densities with specific colors.
- Brightness & Contrast: Can be adjusted for each of the presets to enhance the image.

- **Visible:** Allows the 3D Volume Rendering to be turned on or off from view.
- **Remove Crown:** Only applicable with surgical guide-related modeling service options.
- **Sharpening Filter:** Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.

Clipping:

- Click the “Enable Clipping” box to slice the image along the predefined anatomical planes (sagittal, axial, coronal, and arch). Scrolling the mouse wheel or moving the slider will move the clipping plane. To switch a view to the opposite side, click “Flip.”

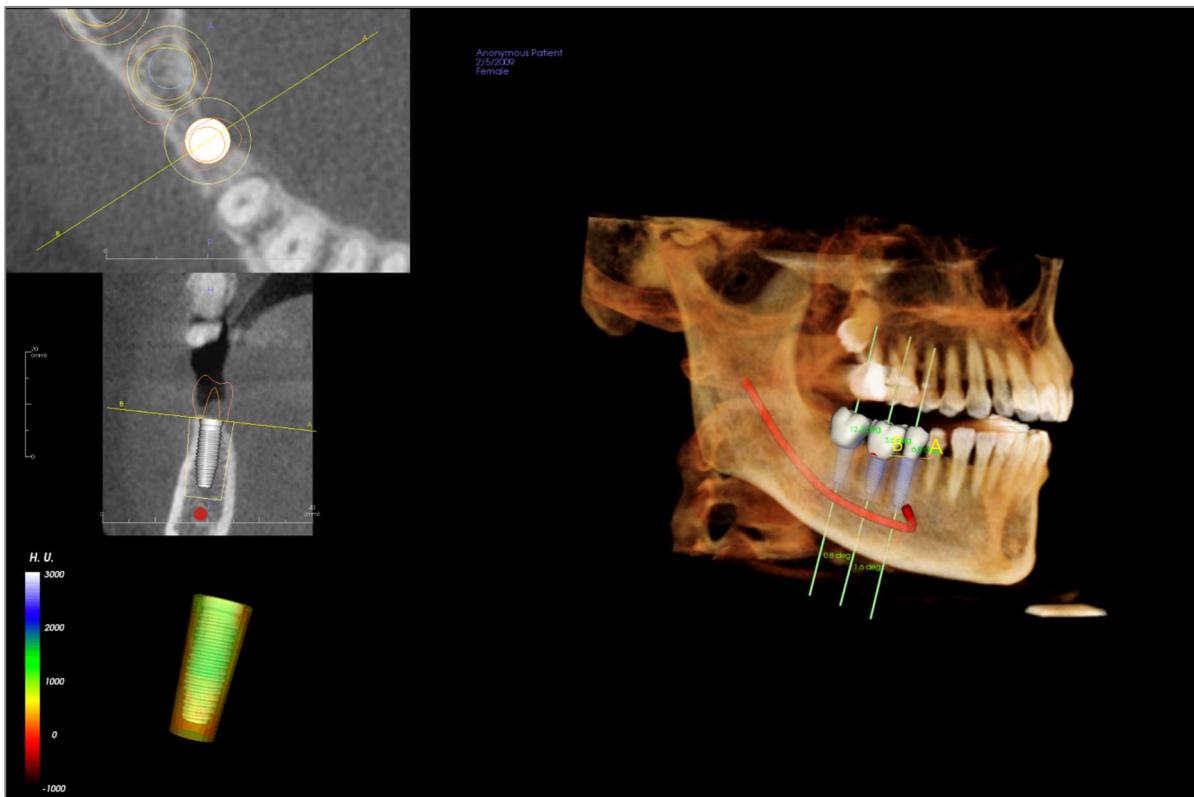
Implant:

The implant section can be configured to only show specific implants as defined by the user. For more information, look at the Preferred Implant settings further in this section.

- ID: Use the drop-down menu to select an implant to manipulate. The active implant will appear lighter in color than the others.
- Manufacturer, Product Name, Diameter, and Length: The default is generic, but the specific implant manufacturer, product, diameter, and length can be selected.
-

Annotation:

- Edits selected comment/annotation in the text field.
- Toggle added comments on/off by selecting “Visible.”


Pointer Coordinates:

- IJK or XYZ: coordinates give the user the ability to examine the coordinate of the cursor upon the absolute coordinate system.
- Scalar Value is the gray scale value of the voxel pointed by the cursor pointer. H.U. or Hounsfield unit, is an approximate value of the voxel calculated by “Rescale Slope” and “Rescale Intercept” in DICOM information. H.U. value approximations may not be as accurate if the CT hardware calibration is off. Contact the hardware manufacturer for more information about H.U. accuracy.

Save View Settings

- Saves the current 2D view settings to be reloaded upon opening any case. See the Display Preferences section in **Preferences** (pg. 17) for more information on which settings are saved for this specific tab.

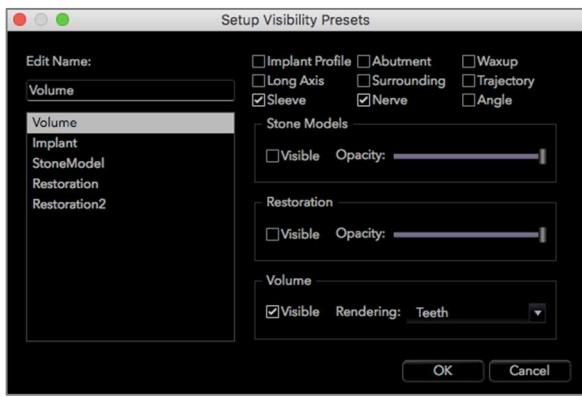
Implant: Rendering Window

Used for more precise control and final detailed touches to implant treatment planning. Use the navigation features discussed below to visualize all aspects of the implant in the 3D volume. For further information on implant position and sizing using the implant widgets, please refer to the next section of the manual.

Axial Section: Top left window. This section is the view from the top of the implant. The yellow line passing through the axis creates the view seen in the sagittal view. Scrolling the mouse wheel after clicking inside the axial window, or clicking and dragging the line will change the cross section seen in the sagittal view as the line rotates about the axis of the implant. Asymmetrical (STL) implants can be rotated about the long axis in this view (see the next section).

2D Section: Middle and bottom left window. The A-B line passing through the implant creates the cross-section view that appears in the axial view and is set by default to be positioned at the level of the implant emergence point. Scrolling the mouse wheel after clicking inside the sagittal window, or clicking and dragging the line will change the cross section seen in the axial view. The implant widget in this view allows for quick resizing of implant length and diameter (see the next section).

Density Profile: Lower left window when turned on. Displays a real-time visualization of the volume density immediately surrounding the implant.

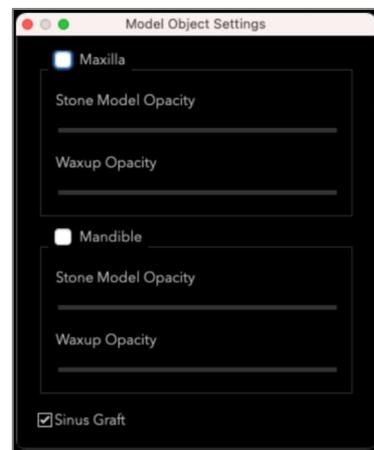

Volume Rendering: Right window. This frame allows user to change the implant position and orientation with the orientation widget within the 3D volume rendering.

Warning: Any implant planning that is performed incorrectly in any aspect including but not limited to implant location, orientation, angle, diameter, length, and/or manufacture can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based off of the implant planning error(s) in question. It is critical for the end user to learn how to use the implant treatment planning tools correctly. If you notice any inconsistencies or software problems with implant planning or have further questions or concerns about correct utilization of implant planning, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

Implant: View Preset Setup

Visibility presets allow for easy switching between set views during implant planning. To configure these settings, click on **Setup**. These presets may also be modified in the Restoration Tab.

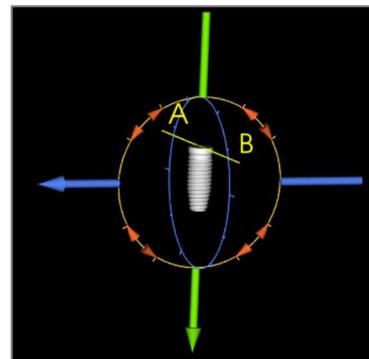
- **Edit Name:** Click on any preset to select it. Type the new name into the field.
- Visibility checkboxes hide or show features in the rendering window.
- **Implant Profile:** Controls the visibility of the solid implant cross section in the 2D renderers. When activated, the currently selected implant will have a red profile and the unselected implants will have blue profiles. When not activated, the selected implant will show an opaque cross section of the implant and the unselected implants will show as blue profiles.


- **Abutment:** Controls the visibility of the abutment 3D model in the volume renderer or the colored profile in the 2D slice renderers.
- **Waxup:** Controls the visibility of the profiles in the 2D renderers and 3D models on the volume. Option is only available after they have been added by an Osteoid technician as part of a surgical guide case workup.
- **Long Axis:** Displays a colored rod running through the long axis of the implant in the volume render.
- **Surrounding:** Displays the surrounding volume around an implant. The collision zone is determined by the allowance defined in the preferences.
- **Trajectory:** Displays the simulated trajectory of the implant during surgical placement.
- **Sleeve:** Controls the visibility of the profiles in the 2D renderers and 3D models on the volume. Option is only available if the mandibular and maxillary models are available as well as after the Check Sleeve action has been performed.
- **Nerve:** Displays a 3D nerve in the volume render or a cross section of the nerve in the 2D section renderers.
- **Angle:** Controls the visibility of the angle between the long axes of adjacent implants as well as the angles of the abutment for each implant.
- **Model:** Controls the visibility of the stone models. Varying degrees of transparency can be obtained with the Opacity slider.
- **Restoration:** Controls the visibility of the 3D waxup models in the volume renderer and the colored profile in the 2D section renderer. The colored profile of the selected restoration or restoration associated with the selected implant will be red while the unselected restorations will be pink. Varying degrees of transparency can be obtained with the Opacity slider.
- **Volume:** Controls the visibility of the volume render as well as the rendering type.

Implant: Model Visibility

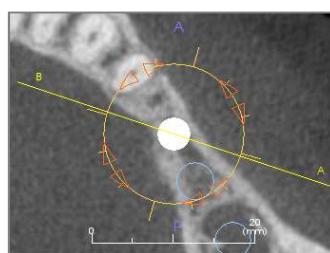
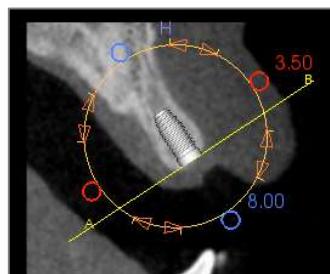
The **Change Model Visibility** function will open the Model Object Settings dialog.

- The “Mandible” and “Maxilla” checkboxes control all of the model visibility options (except Profile Only and Density) and allow the user to turn off the set of models for each jaw independently. *Note: The visibility checkboxes in Model Object Settings will not always match the checked/unchecked status of the visibility checkboxes in the Control Panel.*
- The Stone Model and Waxups Opacity can be adjusted for both jaws.

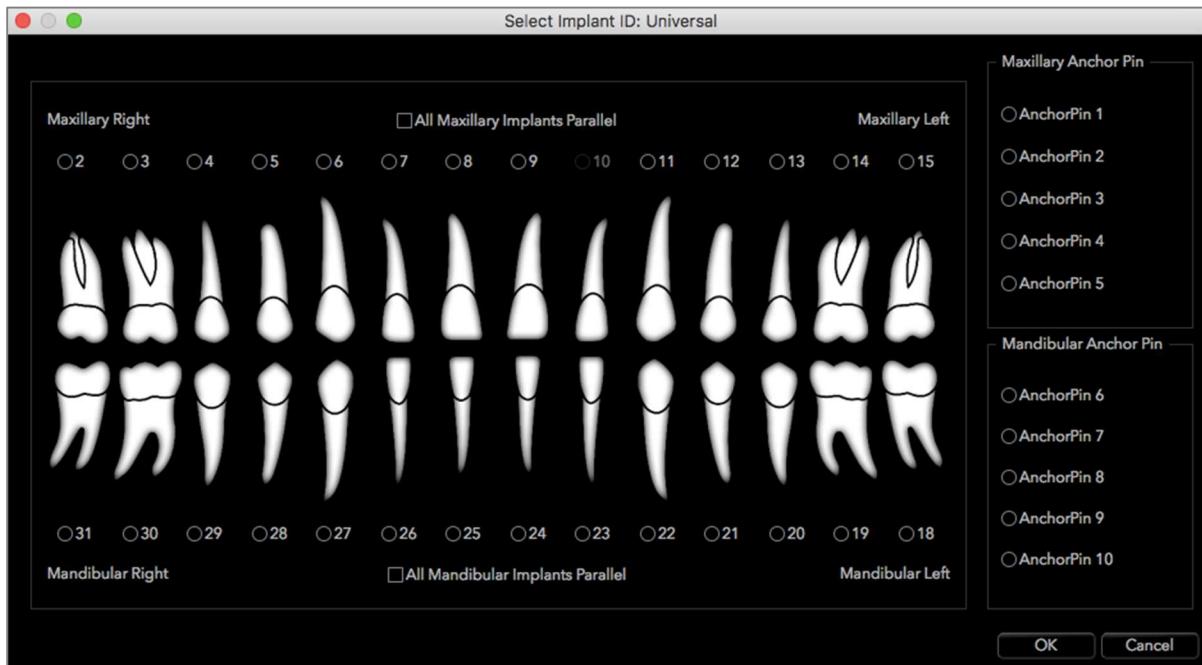


Implant: 3D Implant Widget

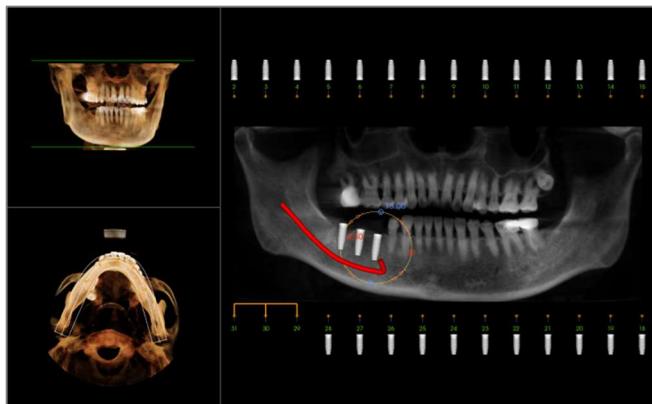
The 3D implant widget is designed to optimize visibility in the renderer and provide a high level of versatility in implant positioning. The linear, colored arrows can be dragged to reposition the implant transversely. These arrows only appear when the camera perspective is close to orthogonal. The implant may also be moved along these directions using the keyboard arrow keys.



- The yellow arrow (not shown) is parallel to the A-B line.
- The blue arrow is orthogonal to the green and yellow arrows.
- The green arrow runs through the long axis of the implant.
- The rotation circle appears on the same plane as the two arrows that are close to orthogonal to each other and to the camera perspective and features eight handles for rotation.

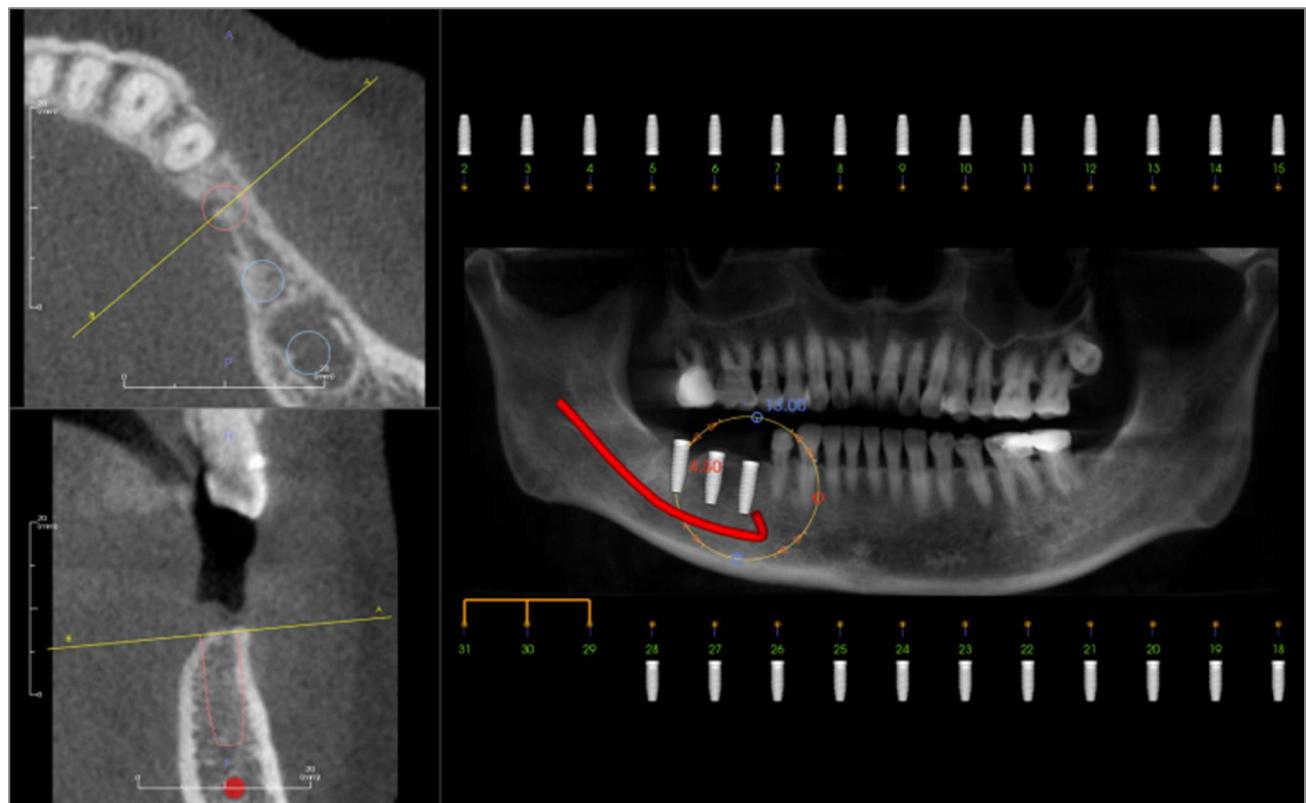
Implant: 2D Implant Widget


The 2D implant widget is designed to optimize visibility in the slice renderer and provide a high level of versatility in implant positioning and sizing. The implant may also be moved along its long axis or orthogonally with the keyboard arrow keys.

- The rotation circle has eight arrows for implant rotation along the same plane as the currently displayed slice.
- The two red handles can be selected and dragged toward/away from the implant to reduce/expand the diameter of the implant sequentially through any available options for that implant model.
- The two blue handles can be selected and dragged toward/away from the implant to reduce/expand the length of the implant sequentially through any available options for that implant model.
- The implant model itself can be selected and dragged in any direction along the same plane as the currently displayed slice.
- A rotation circle appears when the product cross section is selected that allows for implant rotation about the long axis of asymmetrical (STL) implants in the top left section renderer. Please contact Osteoid for an updated list of asymmetrical (STL) implants.

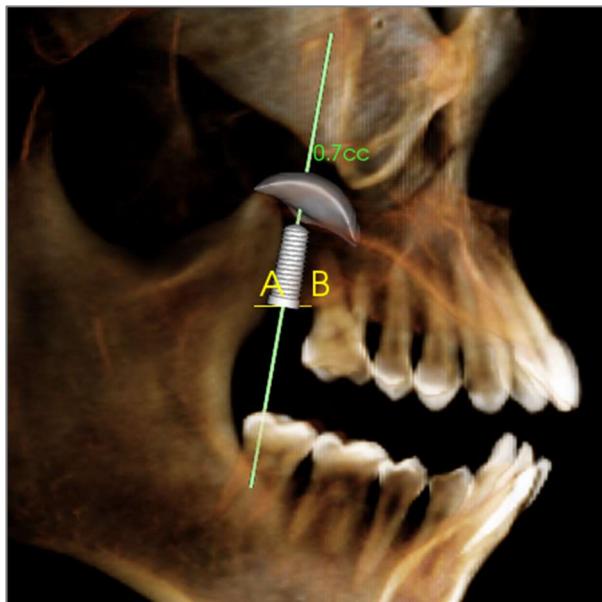
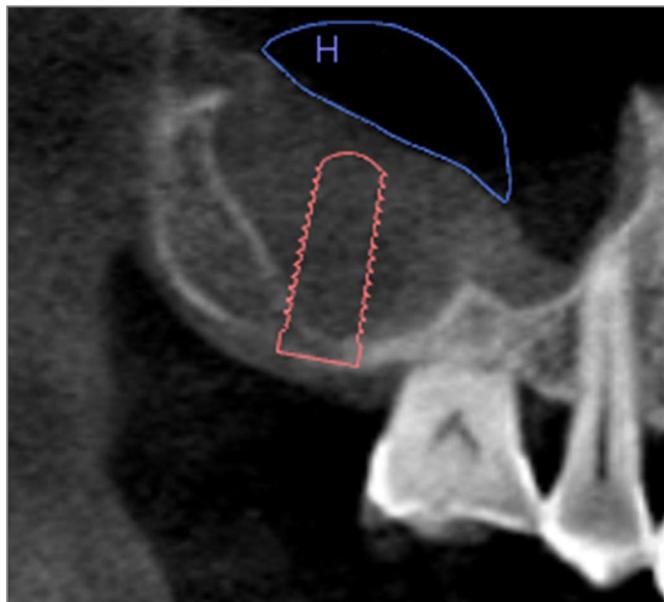

Implant: 3D Implant Planning

- In the Control Panel, click the **Add Implant** button.
- The implant ID dialog will show up (image below).
- Select the implants to be inserted. Press **OK**, and an implant and its ID will appear on the mouse pointer.
- Drag and drop each implant in 3D view onto the surgical site. (It helps to have the volume rotated so that the surgical site is centered.)
- In axial view, align the yellow line such that the lower cross-section view becomes the view along mesiodistal direction.
- In cross-section view, re-orient and position the implant so that its angle is as desired.
- In axial view, align the yellow line such that the cross-section view becomes the view along the buccolingual direction.
- In cross-section view, re-orient and position the implant so that its angle is as desired.
- Review the final implant position in 3D view.
 - To delete an implant, select the desired implant in the 3D view and press the “fn” + “delete” keys on the keyboard. The implant will be removed.


A similar procedure can be done to add anchor pins to the 3D volume. Select which anchor, and follow similar steps for adjusting its position.

Implant: Pano Implant Planning

- Select Planning Layout: Pano Implant under the Control Panel in the Implant Tab.
- Rendering window updates to pano view (left).
- Adjust the ArchSection focal trough such that the middle profile passes through the dentition.
- Drag implants to their desired locations and adjust their angles.
- Click to select implants and manipulate them in the cross sections.



- Click the nodes above the implant identification numbers and drag to connect them with other implants to create parallel implant groups. Remove the implants from these groups by clicking on the nodes again.
- Repeat for all desired implants.
- Select Planning Layout: 3D Implant to exit Pano-Mode and further adjust individual implants.

Implant: Bone Graft Simulation

- Select the implant that requires a bone graft and click the **Bone Graft** tool.
- The graft simulation tool will appear as an arc that moves along the central axis of the implant in the cross section.
- Click to place the graft in the desired position.
- The resulting graft will appear in the 2D sections in blue and in the volume rendering in off-white.
- The volume of the graft will be displayed in the volume rendering.
- The graft can be deleted by clicking on it to select it and pressing the “fn” + “delete” keys on the keyboard.

Important: The measurement values may not be true anatomical volumetric measurements. Due to the nature of the imaging, there are imaging artifacts such as white noise, scattering, beam hardening, ring noise or off scale H.U. The software measurement tool cannot distinguish the imaging artifact from the true anatomy. Furthermore, the measurement value depends on threshold values; thus, user must set proper thresholds to get the best estimate of the desired structure. The measurements must not be used as the sole metric for any treatment.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Implant: Advanced Restoration Design

Invivo features advanced restoration design functions located in the Restoration Tab (see the **Restoration** section for more information on this tab, pg. 120). Compatibility between files saved in different Invivo versions will cause certain behaviors that accommodate this new functionality, as described below:

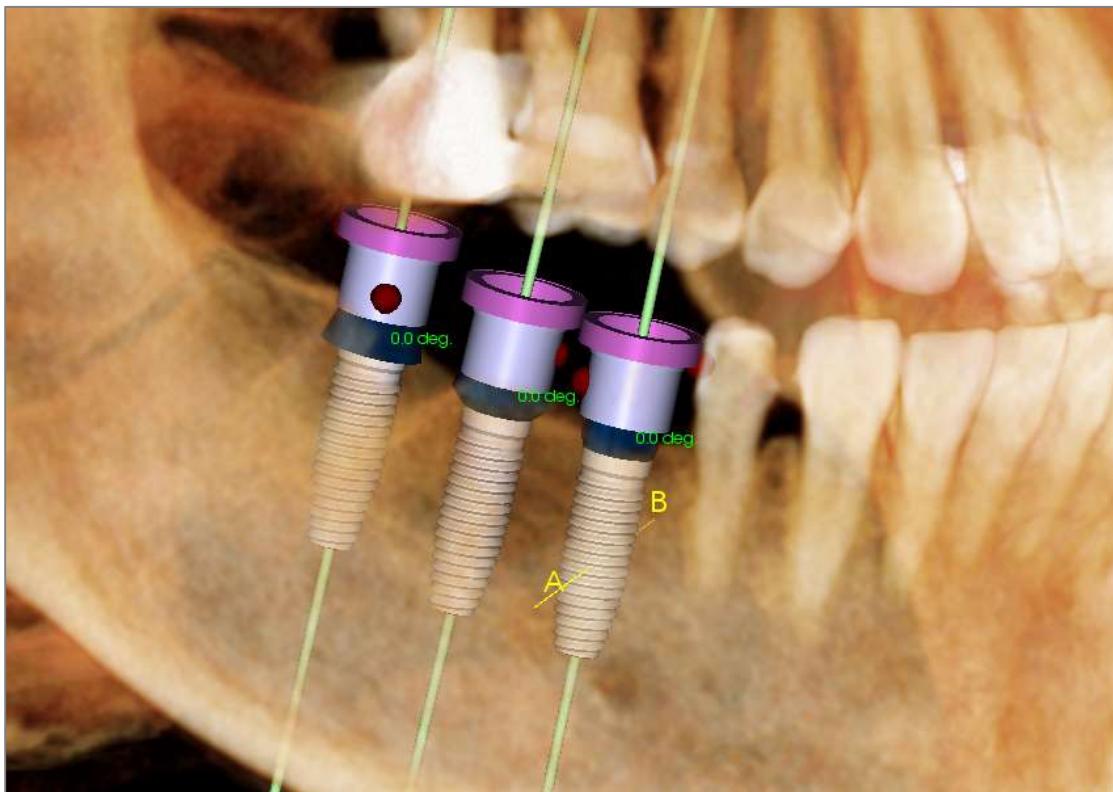
Scenario:

1. Opening an Invivo file saved with implants from any earlier version, but no restorations:
2. Opening an Invivo file saved in Invivo 5.3 or a later version with an implant and restoration workup in earlier versions of Invivo:
3. Opening an Invivo file containing a restoration workup from any version prior to 5.3:

Consequence:

1. The earlier versions of Invivo will not be able to display the restoration crowns in the Implant or Model Tabs.
2. The implant workup will be loaded, and the user will be able to add restorations from the Restoration teeth library.
3. All implants placed will be present, but any restorations that were added will not be displayed.

Implant: Adding Restorations


Restorations can be added directly to all the implants using the **Add All** button. A default restoration will be placed on each implant that does not yet have a restoration.

The **Remove All** button will remove all the placed restorations.

Clicking on a restoration turns on a widget that allows for adjustment of the size and angulation of the restoration. The restoration can also be clicked and dragged for repositioning. The **Edit** button will present the option to do further editing in the Restoration Tab. Locking the restorations to implant will automatically move the restorations when the implants are moved. Restorations may also be added, edited, or removed in the Restoration Tab (see **Restoration** section for more information, pg. 120). The Restoration Tab view is synchronized with the Implant Tab view for ease of editing between the two tabs.

Implant: Check Sleeves

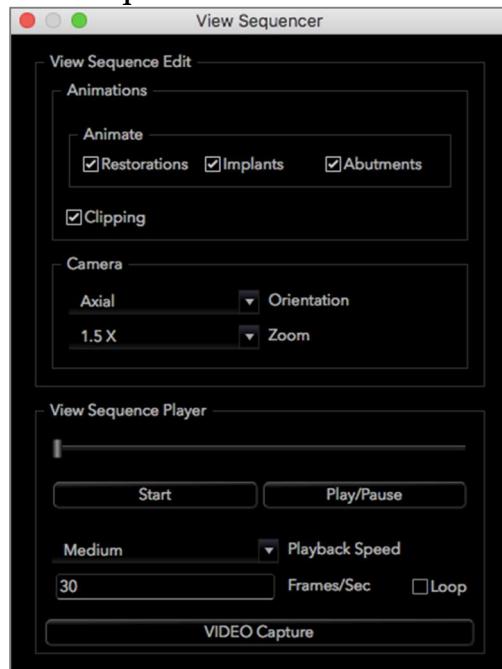
The **Check Sleeves** function can be performed to determine the position of where sleeves would be if a surgical guide was produced for implant placement. This function will simulate possible collisions that may occur between:

- Sleeves and other sleeves
- Sleeves and the instrument
- Sleeves and the stone model
- Instrument and the stone model

Interference: Demonstrated visually by a dark red-colored sphere. **These interference indicators are not updated in real-time and will only be rechecked after each instance that Check Sleeves is performed.**

Check Sleeve Interference: The user can change certain preferences to better simulate the actual procedure that will be performed, such as sleeve system, instrument, sleeve size, and drill. Solution options are to change implant planning, change sleeve preferences, or to allow a technician to try to resolve the interference.

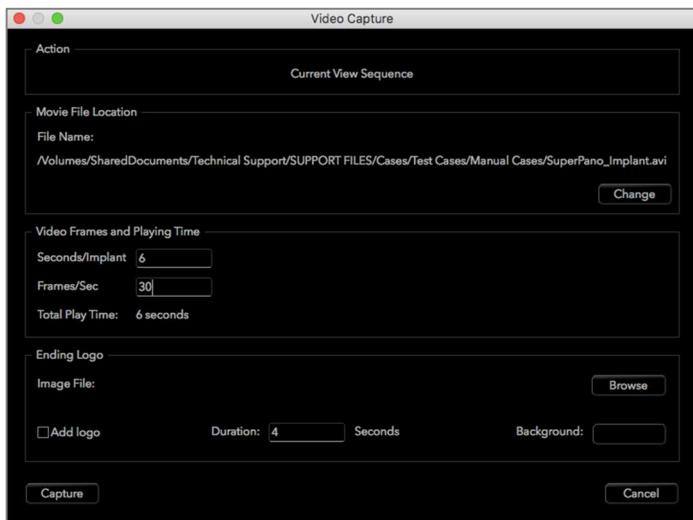
The option to check sleeves will automatically appear when attempting to save Invivo Surgical Guide planning files.


Implant: View Sequencer

- The implant view sequencer is a movie-creating tool that contains both an axial and buccal (shown above) preset sequence of view positions and rotations.
- The sequence is adapted to be used with any case and immediately played as a preview.
- A movie file (.avi) that resembles the preview can be captured.

View Sequencer

Animation


- **Animate:** Set the sequence to animate the placement of implants, abutments, and restorations.
- **Clipping:** Set the sequence to include the preset clipping actions.

Camera

- **Orientation:** Set the orientation to be axial or buccal.
- **Zoom:** Set the zoom level of the rendering window (None, 1.5X, 2.0X).

View Sequence Player

- **Slider:** Shows the current progress through the video while allowing navigation through the preview by clicking and dragging.
- **Stop:** Stop the preview.
- **Play/Pause:** Starts the video/pauses the video/resumes the video.
- **Playback speed:** Speed of playback (slow, medium, fast).
- **Frames per second:** Sets the smoothness of the preview playback.
- **Loop:** Sets the preview to loop at the end of playing the sequence.

Action

The current view sequence will be captured into a movie file.

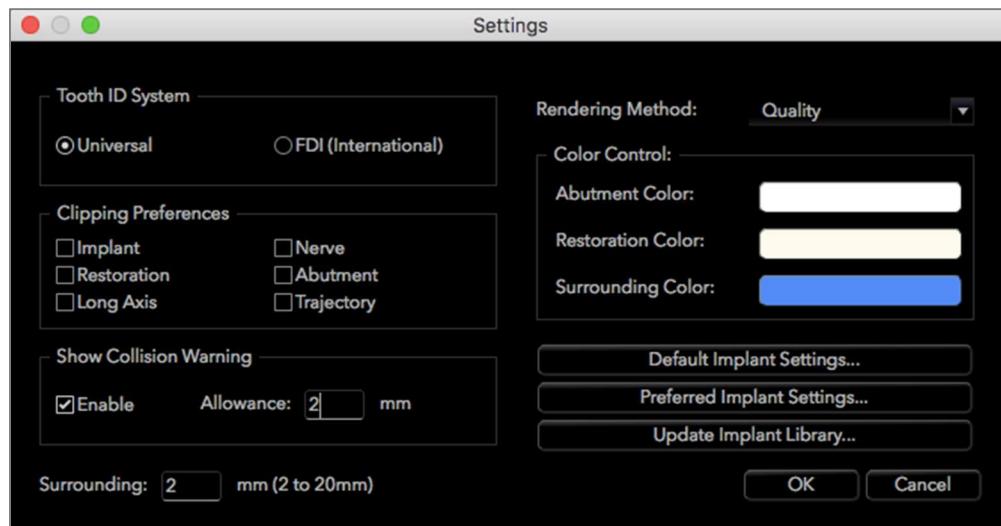
Movie File Location

Choose the location to save the file by clicking **Change**.

Video Frames and Playing Time

- Seconds/Implant: Length of sequence for displaying each implant.
- Frames/Sec: Smoothness of the video.
- Total Play Time: Calculates the total play time for the options selected.

Ending Logo


- Image File: Click **Browse** to select the location of the logo file.
- Add Logo: Select the checkbox to add in a logo segment to the movie.
- Duration: Set the length of time to show the logo.
- Background: Set the background color for the logo segment.

Capture

- Creates a video file from the selected sequence and video recording settings. Click **Cancel** to exit this dialog without recording the video.

Implant: Settings and Preferences

Selecting the **Setting** tool opens up a customization window within the Implant Tab:

Tooth ID System:

Set the ID to either the Universal or FDI(International) standard.

Clipping Preference:

Options for which models to include in volume clipping.

Show Collision Warning:

Define whether or not to display a proximity warning between implants at an allowed tolerance.

Surrounding:

Set the diameter of the surrounding cylinder when displayed.

Rendering Method:

Choose the rendering method (Default, Performance, and Quality) to be used in the Implant Tab.

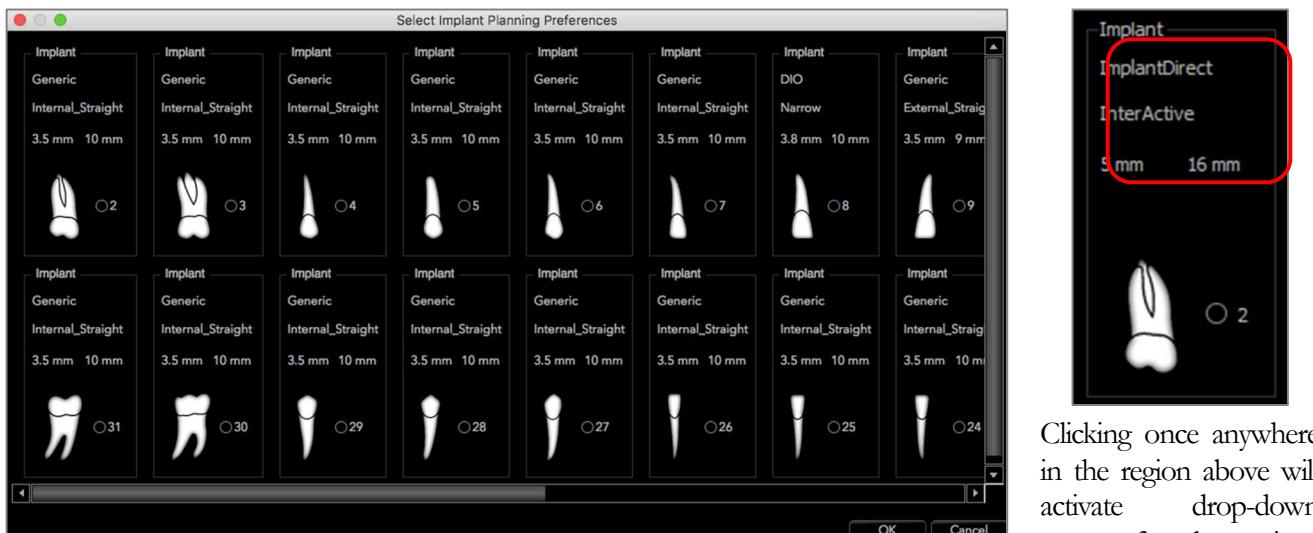
Color Control:

Set the various colors for the abutment, restoration, and collision colors.

Default Implant Settings:

Adjust default settings for individual implants. See more information below.

Preferred Implants Settings:

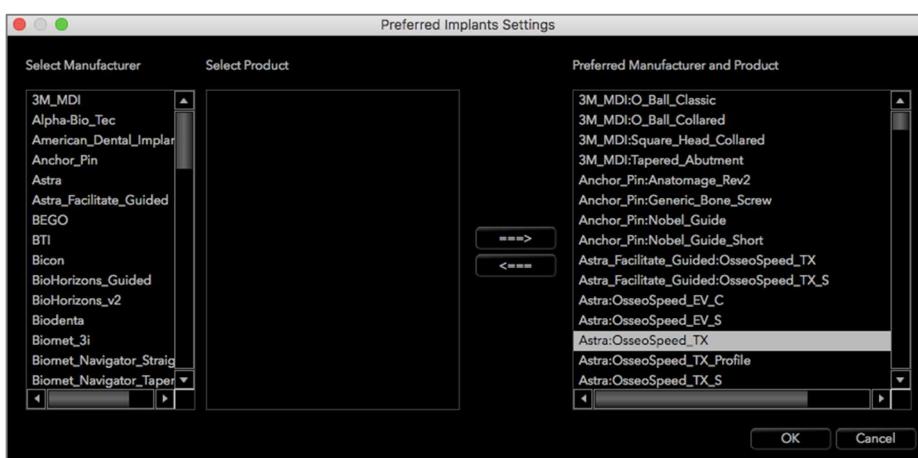

Used to modify which implants will be displayed in the drop-down menus in the Control Panel. See more information in the **Preferred Implant Settings** section (pg. [Error! Bookmark not defined.](#)).

Update Implant Library:

Check STL implant library update availability and download them directly.

Detailed Implant Settings

In **Detailed Implant Settings**, the default settings of each placed implants can be set.



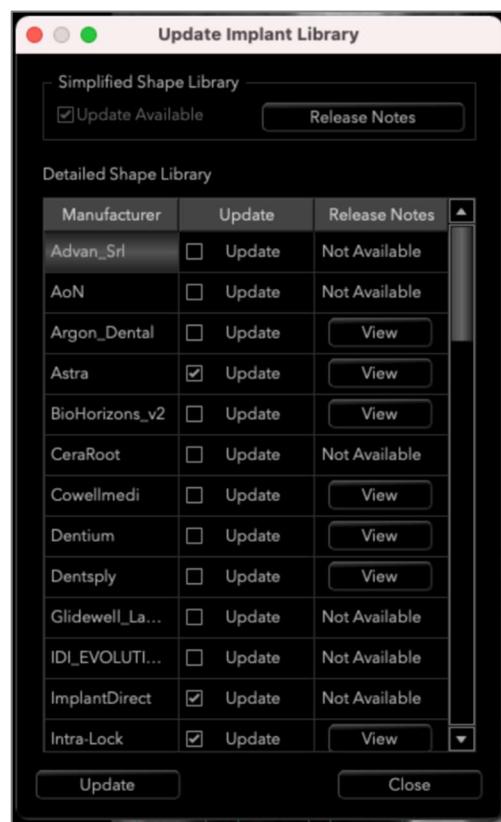
Clicking once anywhere in the region above will activate drop-down menus for the various implant characteristics. *Options will not appear for implants not in the preferred list (see below).*

Click **OK** to save these preferences and the designated implant will be selected automatically when choosing a tooth in the Add Single Implant menu.

Preferred Implants Settings

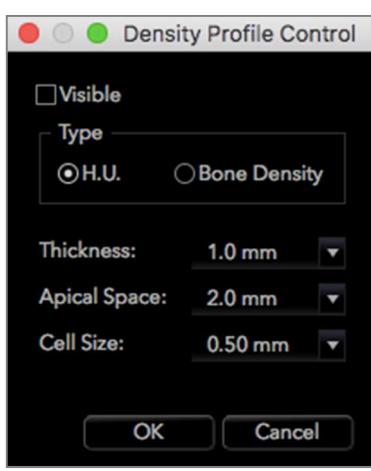
The user can hide certain implants from populating the lists to simplify the drop-down menus. By default, all implant manufacturers and types are selected as “preferred.” **To remove an implant, select it in the list on the right-hand side and use the left arrow button to remove it from the list.**

Settings will take effect in the drop-down menu options for Detailed Implant Settings as well as in the Implant section of the Control Panel. If there is a case open with implants that are not in the preferred list, the implant will still show up correctly in the renderers and the Control Panel. However, the specific settings for this implant cannot be changed and implants of the same type cannot be added.


Adding implants to the preferred list can be accomplished by selecting the implant manufacturer on the list on the left-hand side, selecting the specific product in the middle column, and pushing the right arrow button to add.

Certain manufacturers are divided into guided and non-guided subsets to indicate compatibility with the Invivo

Surgical Guide kits.


Update Implant Library

Due to the size of STL implants, most implant library updates hosted online or within the installer will not contain these implants. This function allows the user to select specific STL libraries as desired. Available updates for the listed manufacturers are indicated in the Update column. Select the desired manufacturers and click **Update** to download the library into the software. Restart the software to apply the updates.

Density Profile Control

Select the **Density Profile Control** tool to adjust the settings for the Density Profile.

Visible: Toggles the visibility between the Density Profile and the third cross section.

H.U.: Shows the bone density in Hounsfield units.

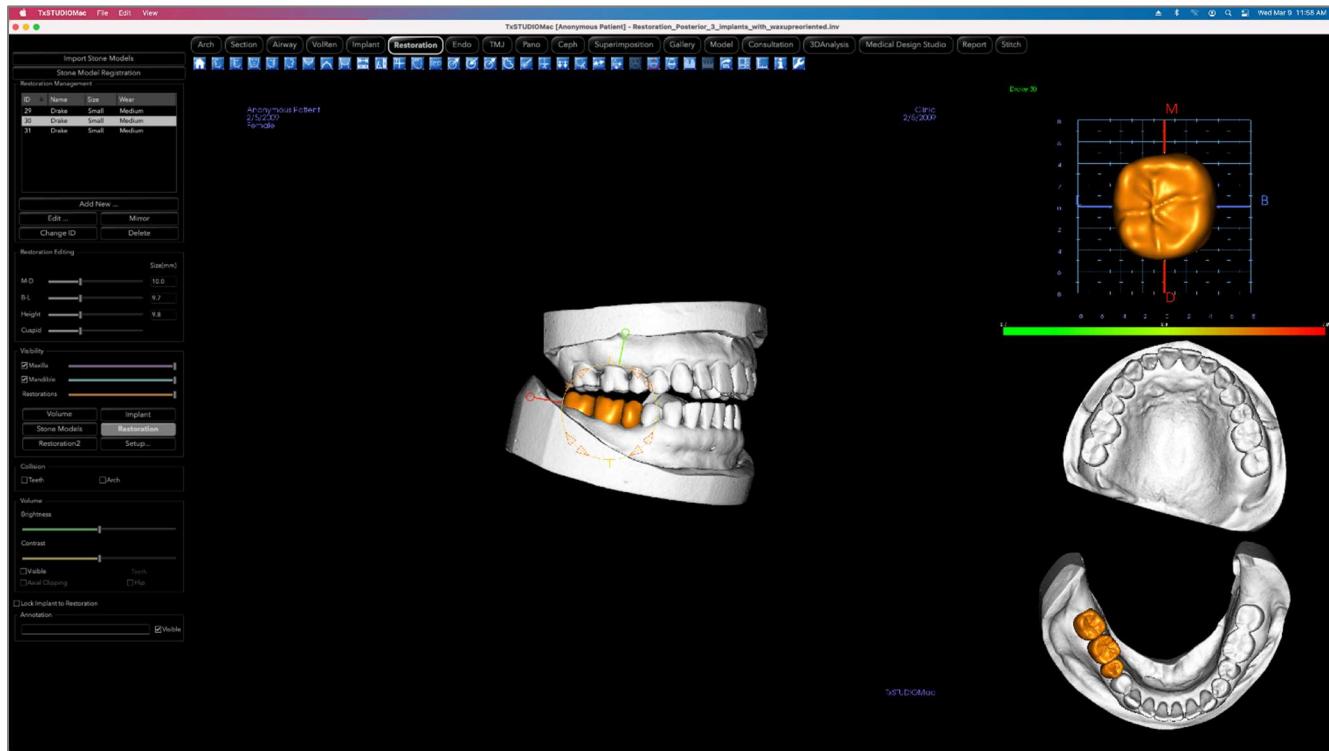
Bone Density: Shows the density in Misch's bone density units.

Thickness: Changes the sampled volume located around the implant.

Apical Space: Changes the sampled volume located at the apex of the implant.

Cell Size: Changes how finely the voxels will be sampled and displayed in the volume around the implant.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have


further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Warning: Any implant planning that is performed incorrectly in any aspect including but not limited to implant location, orientation, angle, diameter, length, and/or manufacture can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based off of the implant planning error(s) in question. It is critical for the end user to learn how to use the implant treatment planning tools correctly. If you notice any inconsistencies or software problems with implant planning or have further questions or concerns about correct utilization of implant planning, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

Restoration View Features

The **Restoration View Tab** is an advanced tool that bridges the gap between implantology and restoration crown design. Users can register the stone models and add teeth directly or onto existing planned implants. With the model collision visibility options, numerous teeth libraries, and mesh editing features, this tab will guide implant surgery toward perfect occlusion.

Restoration: Toolbar

Shown below are the Toolbar and tools that are loaded with the Restoration View Tab:

Reset: Resets the rendering window to the original view size.

Left: Automatically orients the volume so the patient is facing left sagittal.

¾ Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

¾ Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Distance Measurement: Select this option and mark two points on the volume and distance will appear. Clicking on the point and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features in Volume Render Tab allow the values to be projected to 2D, hidden, or exported to a report.

Angle Measurement: Select this option and mark three points on the volume and angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features in Volume Render Tab allow the values to be projected to 2D, hidden, or exported to a report.

Comment Marker: Pick a point in the volume and enter comments. Type the desired text label and press **OK**.

Show Collision: Turns on/off the collision between teeth restorations and the opposing/working stone models or restorations.

Show inter-arch collision: Turns on/off the visibility of collisions between the stone models.

Area Drag: Turns on the area drag tool in the rendering and the single tooth renderer windows.

Push mesh: Turns on the push mesh tool in the rendering and the single tooth renderer windows.

Pull mesh: Turns on the pull mesh tool in the rendering and the single tooth renderer windows.

Smooth mesh: Turns on the smooth tool in the rendering and the single tooth renderer windows.

Auto collision resolution: Turns on the auto collision tool in the rendering and the single tooth renderer windows.

Plane Cutter: Activates a polygonal cutting tool to cut and close the mesh of stone models in the rendering window.

Cap Model: Applies a capping function to the available open mesh stone models.

Tooth Extraction: Enables a polygonal mesh cutting tool for use on a stone model in immediate extraction cases.

Adjust Occlusion: Turns on the stone model adjustment widget for manually moving the stone models and their dependent restorations in the rendering window.

Articulation: Opens the Articulation dialog to open/close the jaws with a simulated biting motion.

Fit to Custom Abutment: Opens a dialog to adjust the interface between a restoration and a custom abutment.

Fit to Margin: Opens a dialog to adjust the interface between a restoration and a prepped tooth on the stone model.

Custom Abutment: Opens a dialog that provides options for abutment design.

Create Pontic with Gingiva: Opens a dialog to modify the base of a pontic to fit to or offset from the stone model.

Create Bridge Connector between Selected Restorations: Creates a bridge linking all of the selected restorations. This bridge group can be deleted and converted back into the individual restorations.

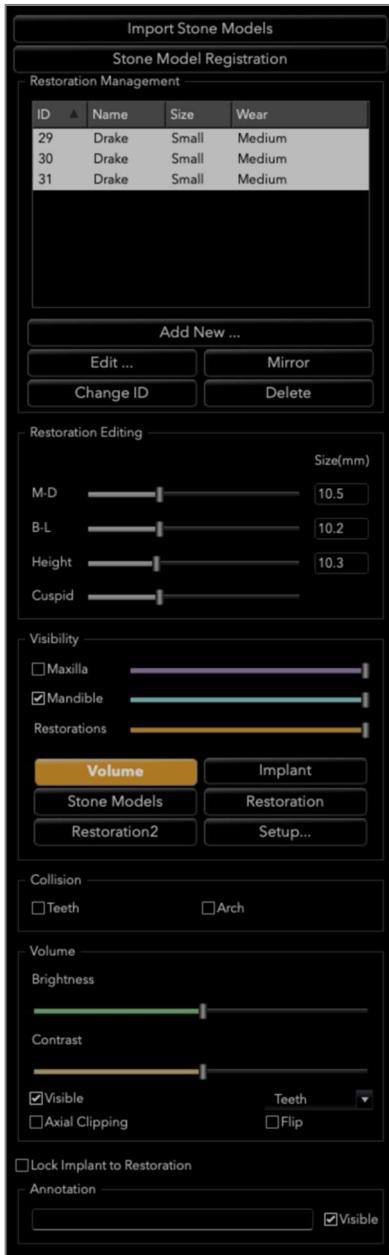
Export Restorations: Export restorations as a single STL or individual STL files.

Layout: Toggles the rendering window layout.

Grid: Turns on/off the 2D grid for simple assessment of size, measurement, and spatial location.

Information Display: Displays or hides case information embedded in the data.

Settings: Opens the Preferences dialog for selecting color, collision, and default tool size settings.



Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Warning: Any implants and restorations that are incorrectly visualized in Restoration Design Studio may lead to surgical complications or treatment delays. If you notice any inconsistencies or software problems with implant or restoration planning or have further questions or concerns, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

Restoration: Control Panel

Import Stone Models

- Initiates a sequence of steps to import and register a stone model. For more information, see the **Restoration: Stone Model Registration** section (pg. 120).

Stone Model Registration

- Opens the Register Stone Models to Volume dialog to restart the registration for the imported stone models.
- Use Original Registration for Articulation: When the Articulation tool is active, this option toggles between the stone models' default positions and the registered positions.

Restoration Management

- Add New...**: Opens the teeth library for restoration selection and placement.
- Edit...**: Opens the teeth library to change the currently selected restoration.
- Mirror**:Duplicates and mirrors the selected restoration.
- Change ID**: Changes the ID associated with the restoration.
- Delete**: Removes the currently selected restoration from the rendering window.

Restoration Editing

- M-D Size(mm): Adjusts the mesiodistal dimension of the restoration.
- B-L Size(mm): Adjusts the buccolingual dimension of the restoration.
- Height Size(mm): Adjust the height of the restoration.
- Cuspid: Adjusts the cusp dimensions from low to high.

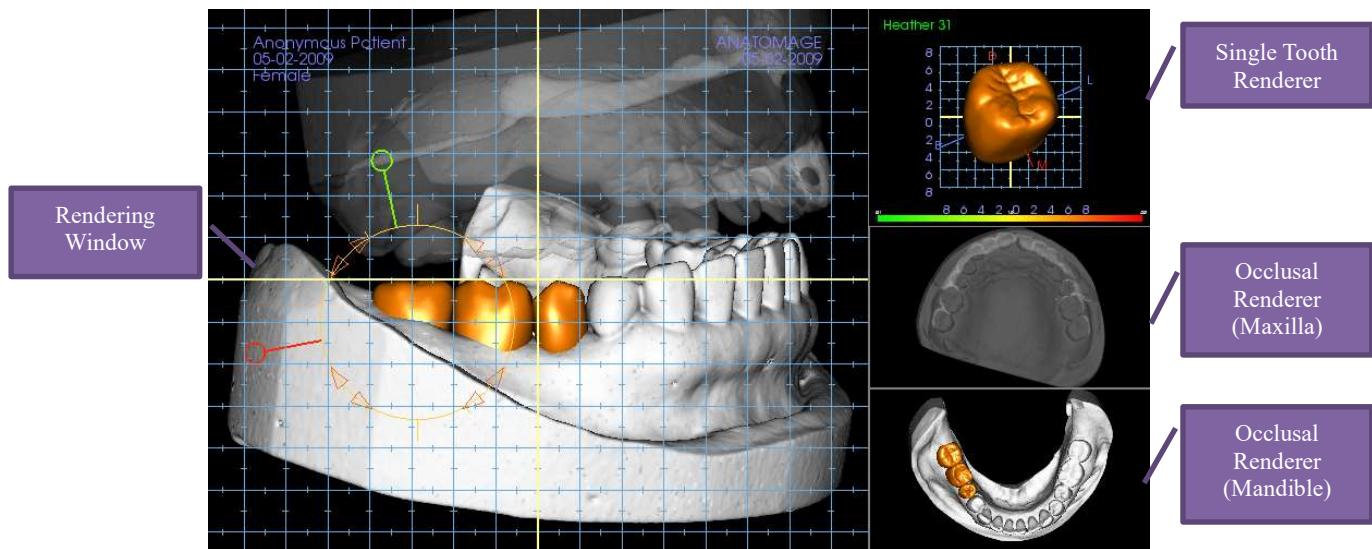
Visibility

- Maxilla: Adjust the visibility/opacity of the maxilla.
- Mandible: Adjust the visibility/opacity of the mandible.
- Restoration: Adjusts the opacity of the restorations.
- Setup**: Opens a dialog where the view presets can be configured.
- Presets**: Preset toggles that display the selected features as configured in the **Setup**.

Collision

- Teeth: Turns on the visibility of collisions between the restorations and the opposing/working stone model or restorations.
- Arch: Turns on the visibility of collisions between the stone models.

Volume


- Brightness & Contrast: Can be adjusted for each of the presets to enhance the image.
- Visible: Turns on/off the visibility of the DCM volume.
- Axial Clipping: Turns on/off axial clipping and the Axial Clipping widget.
- Rendering (drop-down): Chooses the rendering preset between the options of Teeth and Bone.
- Flip: Flips the clipping direction.

Lock Implant to Restoration: When selected, the implant and restoration will move as a single unit.

Annotation:

- Edits selected comment/annotation in the text field.
- Toggle comments on/off by selecting “Visible.”

Restoration: Rendering Window & Mesh Manipulation

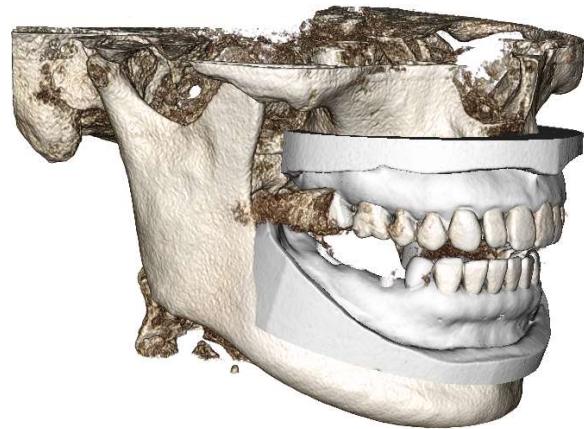
Rendering Window:

- Displays the stone models, restorations, patient volume, implants, and skin models.
- The restoration can be moved by first left-clicking to select the tooth and then left-clicking and dragging the model to a new location from any view. The angle in which the tooth is viewed determines the plane on which the restoration will translate.
- All the mesh editing functions except **Auto collision resolution** will function in this window.
- **Plane cutter, Cap model, Tooth extraction, Adjust occlusion, and Articulation** can be performed in this window.

Single Tooth Renderer:

- The tooth model can be independently rotated and zoomed in this view. Clicking on the **D** (distal), **M** (mesial), **B** (buccal), or **L** (lingual) letters will move the restoration in short steps in the selected direction within the rendering window.
- The tooth library type and tooth number will be displayed in the upper left.
- The color scale at the bottom will indicate the depth of the collision with the opposing stone model when "Tooth collision" is activated. The interval for depth(mm) is set to 0.1 to 2mm and can be changed in the Preferences.
- All mesh editing functions including **Auto collision resolution** will function in this window.

Occlusal Renderer (Maxilla and Mandible):

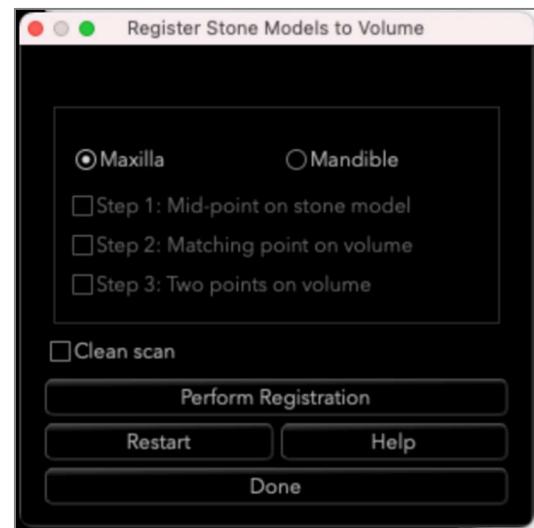

- These renderers will display the STL models, restorations, and the collisions (depth or boundaries) between them. It is intended for viewing purposes and the models cannot be zoomed or rotated but opacity changes will take effect.

Restoration: Stone Model Registration

The **Import Stone Model** function provides a step-by-step through the importing and registration of upper and lower stone models. If stone models are already present in the workup, this function serves to replace the existing models.

Step 1: Import Stone Models

- Click **Import Stone Models** in the Control Panel.
- Choose the .stl or .ply file in the Select Stone Model File dialog.
- Select the type of model as Upper (maxilla) or Lower (mandible).
- Move onto the next step. At the end of registration, click **Import Stone Models** once more if the opposing stone model needs to be imported or if a stone model registration needs to be redone.


Step 2: Select Type of Registration

- **Maintain Position:** The software will apply the transformation data from the registration of the opposing arch to this STL. This option is useful if a pair of STLs (upper and lower) have been registered in another program (intraoral scans may have close bite registration data). In this case, after registering one STL to the DCM (see Register to CT), the second STL can be imported and be loaded so that the close bite registration is restored. This will most likely result in an incorrect position relative to the DCM scan for the second STL, since many CBCT scans intended for implant/restorative workups are taken with open patient bites.

- **Register to CT:** This will initiate the first step in registering the STL file to the DCM. The dialog (right, lower) shows the three steps needed to complete the registration. The layout (Figure 1) shows the STL on the left of the rendering window and the DCM on the right with the adjacent clipping tool. Click **Help** to read the embedded document describing how to register different cases.

- **Clean Scan:** Check this option when the case has little to no scatter. The registration will use additional points for a more accurate registration.
- **Restart:** Resets the user back to Step 1 in the dialog.
- **Perform Registration:** Matches the STL to the DCM based on the points selected.
- **Done:** Closes the dialog.

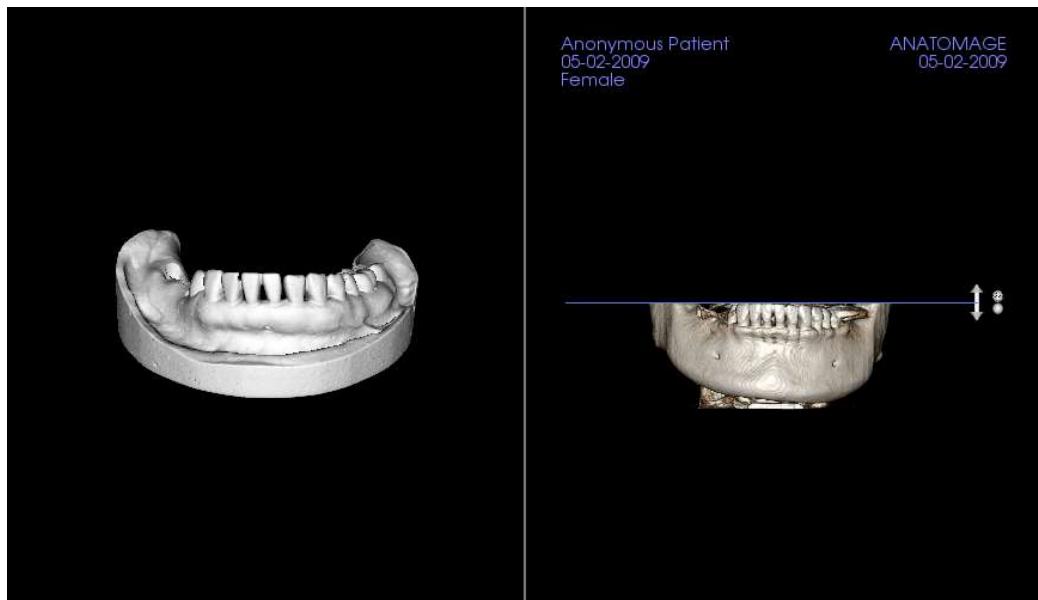


Figure 1

- After clicking **Perform Registration**, the user will be brought to a new layout (Figure 2), which features two volume renderers and three grayscale slice renderers. Use the yellow arrows in the DCM renderer to center the mid-point in the correct position at the front of the scan. After verifying this point in the sagittal grayscale renderer, continue using the other widget arrows and slice renderers to rotate the STL around this mid-point and achieve the proper orientation.

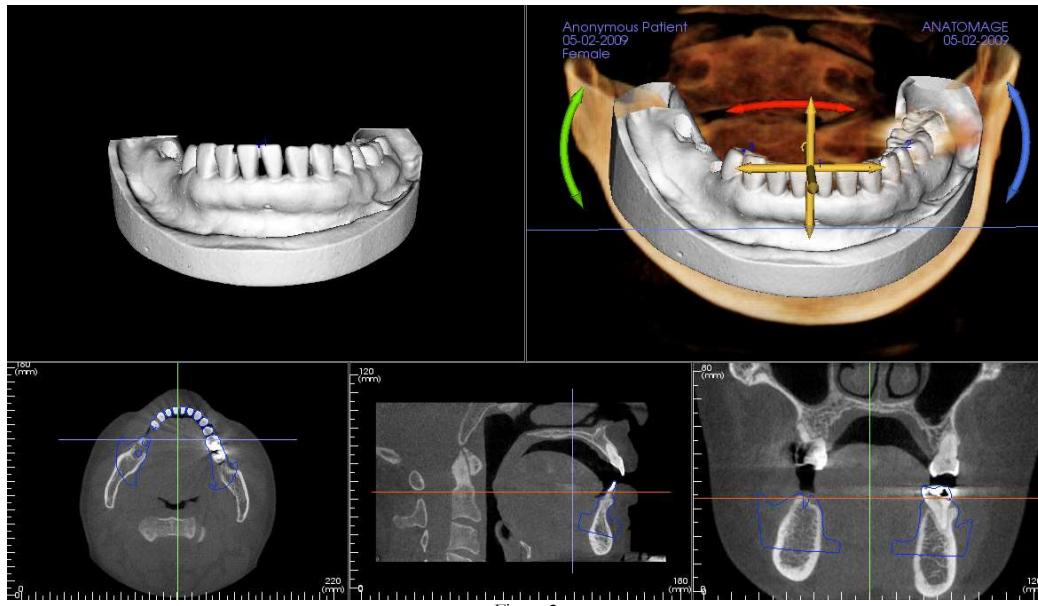
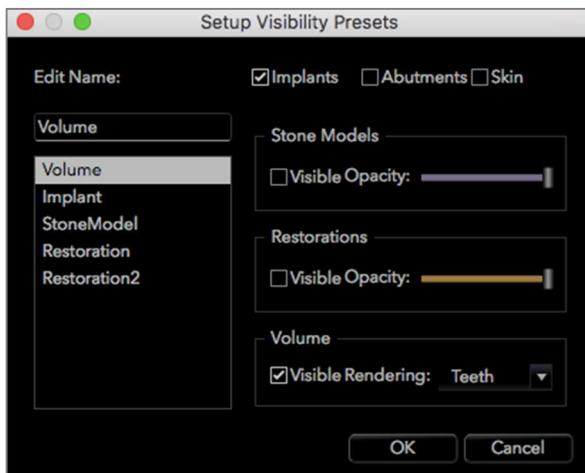
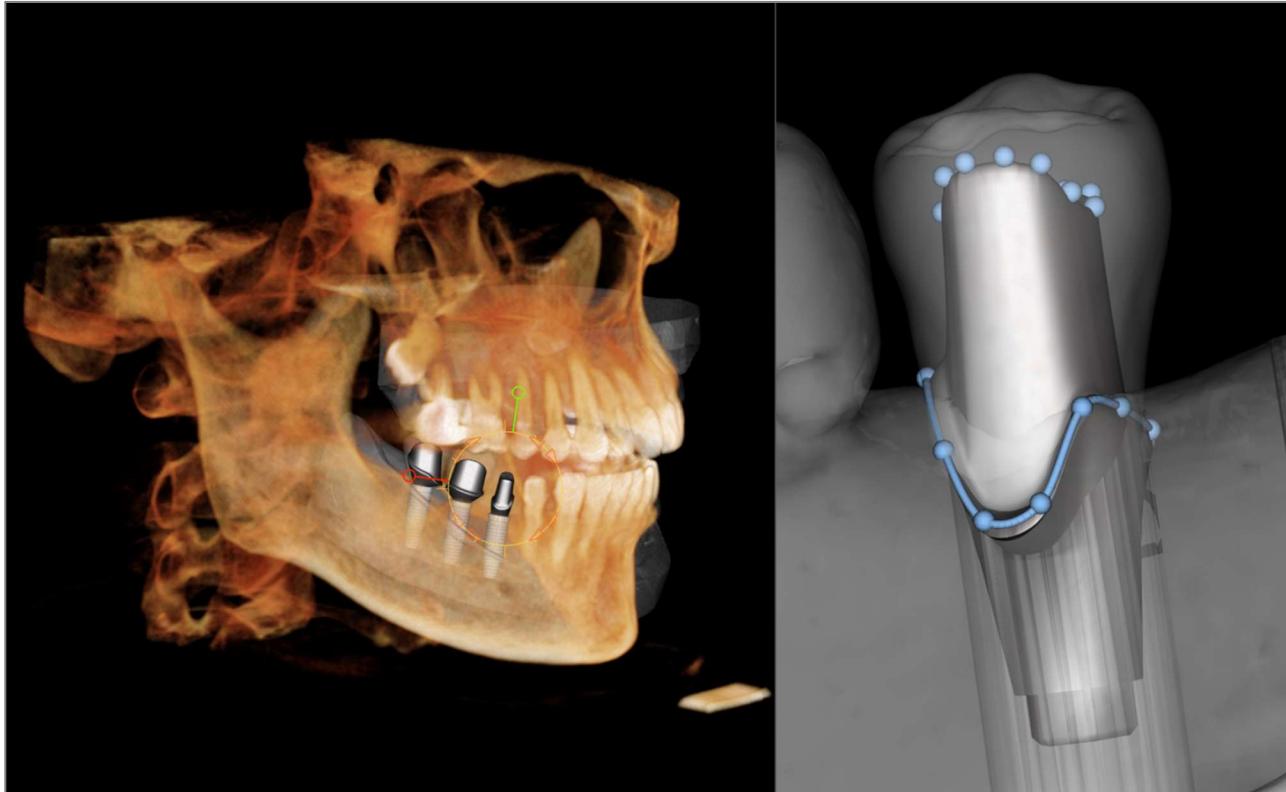



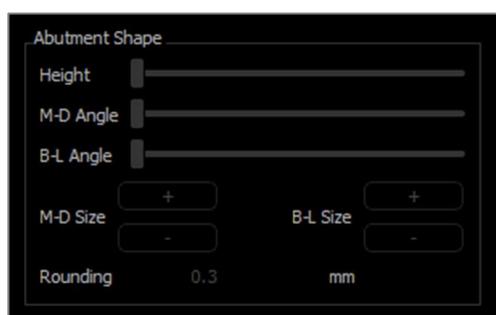
Figure 2

Restoration: View Preset Setup

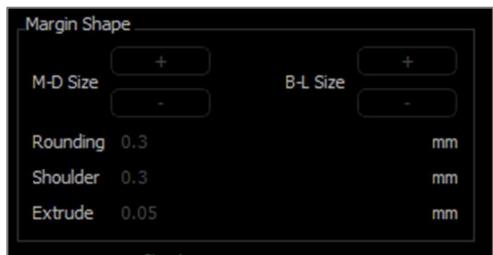

Visibility presets allow for easy switching between set views during implant planning. To configure these settings, click on **Setup**. These presets may also be modified in the Implant Tab.

- **Edit Name:** Click on any preset to select it. Type the new name into the field.
- Visibility checkboxes hide or show features in the rendering window.
- **Implants:** Toggles the visibility of the implants.
- **Abutments:** Toggles the visibility of the abutments.
- **Skin:** Toggles the visibility of the face photo wrap from the Invivo Model workup file or 3DAnalysis.
- **Stone Models:** Controls the visibility of the stone models. Varying degrees of transparency can be obtained with the Opacity slider.

- **Restorations:** Controls the visibility of the 3D waxup models in the volume renderer and the colored profile in the 2D section renderer. The colored profile of the selected restoration or restoration associated with the selected implant will be red while the unselected restorations will be pink. Varying degrees of transparency can be obtained with the Opacity slider.
- **Volume:** Controls the visibility of the volume render as well as the rendering type.


Restoration: Abutment Planning

- The abutment automatically connects the restoration model with the implant model in the rendering window. The currently selected abutment will be displayed enlarged on the right side.


Restoration: Abutment Planning Dialog

Abutment Parameters


Abutment Shape

- Height: Adjusts the length of the abutment.
- M-D Angle: Adjusts the mesiodistal angle.
- B-L Angle: Adjusts the buccolingual angle.
- M-D Size: Adjusts the mesiodistal size.
- B-L Size: Adjusts the buccolingual size.
- Rounding: Adjusts the rounding of the abutment.


Margin Shape

- M-D Size: Adjusts the mesiodistal size.
- B-L Size: Adjusts the buccolingual size.
- Rounding: Adjusts the rounding of the margin.
- Shoulder: Adjusts the margin between the axial (abutment) tooth surface and finish line.
- Extrude: Adjusts the size of the finish line shape.

Emergence Profile Shape

- Upper Curve: Adjusts the shape of the upper portion of the abutment base.
- Lower Curve: Adjusts the shape of the lower portion of the abutment base.
- Screw Hole: Adds a screw hole that exits through the top and bottom of the abutment.
- Healing abutment: Replaces the current abutment with a healing abutment.
- **Adjust Hex Index Angle:** Inserts a new widget into the renderer to allow rotation of the hex.
- **Finish Editing Hex Index Angle:** Removes the widget from the renderer.
- **Delete Abutment:** Removes the selected abutment.
- **Abutment Grouping:** Opens a dialog where abutments can be grouped such that their insertion angles will be parallel.

Restoration: Crown Types

Crowns for prepped teeth or custom abutments

When using the **Fit to Margin** tool or the **Fit to Custom Abutment** tool , the Build Crown dialog appears. This dialog provides options to adjust the base of the restoration to interface optimally with the prepped tooth or abutment.

Cement Gap

- Thickness (mm): The distance between the interior of the restoration and the top surface of the prepped tooth or abutment.
- Distance To Margin (mm): The distance between the inner and outer edge of the restoration at the shoulder.

Undercut/Blockout

- Show undercut regions: Highlights the undercut regions in red.
- Blockout undercut regions: Removes undercut regions by adjusting the restoration.
- Align Insertion Axis with Tooth: This option is only available for prepped teeth. Select the appropriate tooth to align the insertion axis of the restoration.

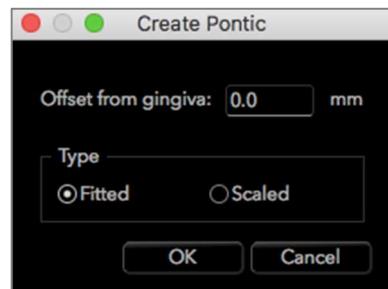
Restoration Border

- Width (mm): Width of the restoration border at the shoulder.
- Angle (deg): Angle of the restoration border.
- Edge (mm): Length of the edge of the restoration border.
- Height (mm): Height of the restoration border.

Enable Margin Editing: This option is only available for prepped teeth. Adjust the margin tracing around the prepped tooth.

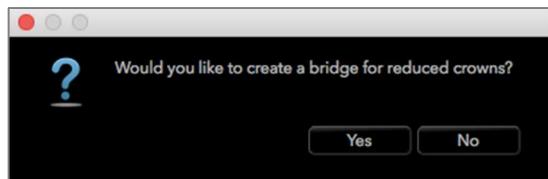
Build Crown: Calculates and updates the shape of the restoration base.

Cancel: Exits the dialog.


Pontics

Pontic restorations will sit a set distance above the stone model can either retain its original design shape or be fit to the stone model's surface. Click to select the restoration of interest and then click the **Create Pontic with Gingiva** tool .

Offset from gingiva: Distance between the bottom of the restoration and the stone model.


Type:

- Fitted: The bottom of the restoration will be reshaped to fit the contour of the stone model.
- Scaled: The restoration size will be scaled such that the bottom is the appropriate offset distance from the stone model.

Bridges

Select a set of restorations by “” + right-clicking each restoration. Click the **Create Bridge Connectors between Selected Restorations** tool to create a bridge.

Choose **Yes** to create a bridge for reduced crowns. This bridge will have editable connectors.

Choose **No** to create a bridge that links the restorations but does not have connectors.

Restorations cannot be manipulated individually or moved after bridge creation.

If a bridge for reduced crowns was created, each connector may be edited individually. Click on the connector to select it and open the Bridge Connector Options and display the editable nodes.

Bridge Connector Options

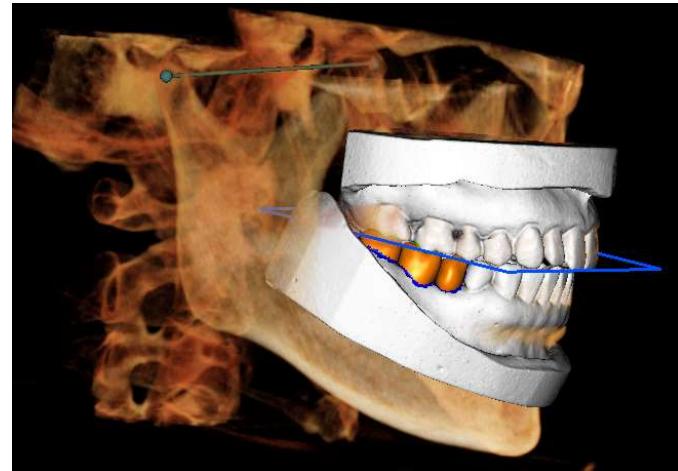
Cross Section Shape: Choose the shape of the cross section of the connector.

End Diameter: Set the diameter of the ends of the connector that contact the adjacent restorations.

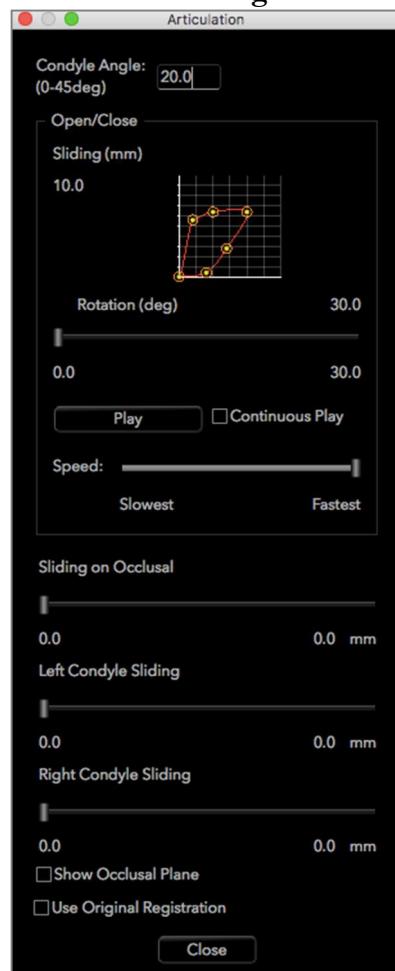
Middle Diameter: Set the diameter of the middle of the connector.

Warning: Incorrect crown fitting may cause inaccurate crown shape and positioning. This may lead to surgical complications or delayed treatment planning.

Restoration: Articulation and Adjust Occlusion


Articulation

For best results, first adjust the occlusion using the


Adjust Occlusion tool . The **Articulation** function will determine a closed-bite orientation for the two STL models and define an occlusal plane. The STL models can then be opened, closed, or slid across each other to simulate anatomical jaw operations. (The closed-bite registration is determined by a best-fit of the two STLs during specified interactions.)

Activation of this feature will turn on:

- A widget for editing the position of the condyles as well as displaying the occlusal plane. The condyle handles can be left-clicked and dragged to the correct positions.
- The Articulation dialog box (below).

Articulation Dialog

Condyle Angle

- This determines the angle of the plane below the occlusal plane on which the mandible STL will slide. (Example: if the Condyle Angle is set to 0 deg, the mandible will slide on the occlusal plane.)

Movements

- Open/Close Graph: Changes the angle of “jaw” opening and degree of rotation during the articulation animation.
- Sliding on Occlusal: Slides the mandible along the occlusal plane with an adjusted angle determined by the Condyle Angle.
- Left Condyle Sliding: Slides the left condyle forward along the occlusal plane with an adjusted angle determined by the Condyle Angle.
- Right Condyle Sliding: Slides the right condyle forward along the occlusal plane with an adjusted angle determined by the Condyle Angle.
- Show Occlusal Plane: Displays the blue frame of the occlusal plane in the rendering window.
- Use Original Registration: Returns the stone models to the original position when enabled.

Close

- Closes the dialog box and returns the STLs and restorations to the original registered position.

Restoration: Preferences

Selecting the **Setting** tool opens up a customization window within the Restoration Tab:

Collision Depth Color Code

- Min Depth: Sets the minimum mesh collision depth for detection and the color corresponding to minimal collision.
- Medium Depth: Sets the color corresponding to the medium level of collision based on the depth range.
- Max Depth: Sets the level of collision detected as maximal and the corresponding color.

Other Settings

- Restoration color: Sets the color of the restorations.
- Stone Model Color: Sets the stone model color
- Grid Color: Sets the color of the grid on the individual restoration renderer as well as the **Toggle Grid** tool.
- Area Drag Outer Radius: Sets the default **Area Drag** tool's outer radius of effect. Area can still be adjusted using the mouse scroll wheel when the tool is in use.
- Area Drag Inner/Outer Radius Difference: Defines the inner circle of the **Area Drag** tool. The inner circle directly experiences drag whereas the area of the outer circle gets subsequently deformed by the drag force.


- Push Widget Radius: Sets the default **Push Mesh** tool's radius of effect. Area can still be adjusted using the mouse scroll wheel when the tool is in use.
- Pull Widget Radius: Sets the default **Pull Mesh** tool's radius of effect. Area can still be adjusted using the mouse scroll wheel when the tool is in use.
- Smooth Widget Radius: Sets the default **Smooth** tool's radius of effect. Area can still be adjusted using the mouse scroll wheel when the tool is in use.
- Movement Step Size: Adjusts the amount the selected restoration moves using the arrow keys.

Collision Settings

- Off: Collision between the structures will not be shown.
- Boundary: Shows only the boundary of collision in blue.
- Shows the depth of collision in the range of colors set in the Collision Depth Color Code section.

Endo View Features

The **Endo View Tab** allows for careful segmentation and examination of a single tooth through various unique 3D volume renderings and 2D slice views. Working length measurements can be performed in this view to calculate root and endodontic file lengths.

Endo: Toolbar

Shown below are the Toolbar and tools that are loaded with the Endo View Tab:

Reset: Resets the rendering window to the original view size and the brightness and contrast to the preset.

Left: Automatically orients the volume so the patient is facing left sagittal.

¾ Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

¾ Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Freehand Sculpture: Freely outline an area and remove the volume perpendicular to the plane of the screen. The volume inside or outside the selection can be chosen by clicking in the respective areas. This tool can only be used after Select Tooth is complete.

Polygon Sculpture: Outline an area by placing a series of points and right-clicking. The volume perpendicular to the plane of the screen will be removed. The volume inside or outside the selection can be chosen by clicking in the respective areas. This tool can only be used after Select Tooth is complete.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Angle Measurement: After selecting this tool, click the first point, then click the vertex, then click the last point to create an angle. A number in degrees will automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Area Measurement: After selecting this tool, click multiple points along the boundary of the desired area. Double-click or right-click to end the measurement. A number in millimeters squared will be automatically display. Click on the measurement and press the “fn” + “delete” keys to delete it.

Polyline Measurement: Select this option and mark any number of points in the slice view. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it.

Working Length Measurement: Select this option and mark the desired measurement endpoints in the view. The working length will be generated between the endpoints, and the total distance displayed.

Arrow Notation: Allows an arrow to be drawn on the image.

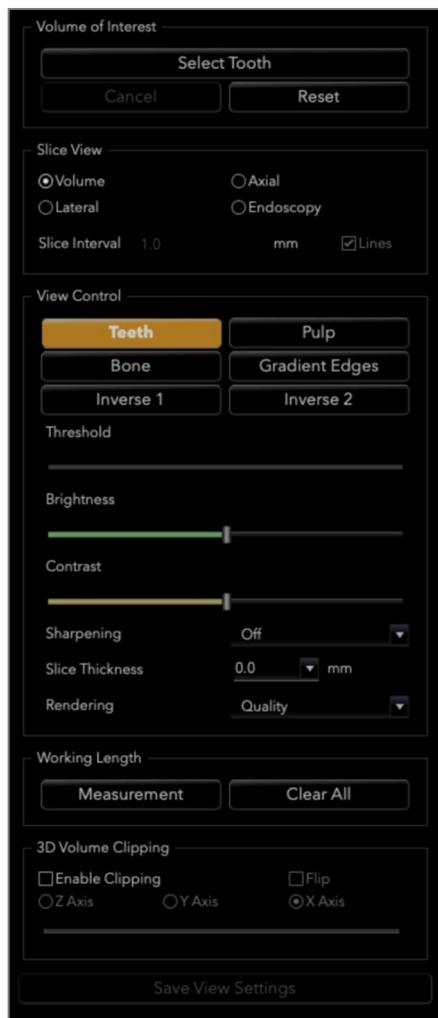
Circle Notation: Allows a circle to be drawn on the image.

Text Notation: Allows text to be written and edited on the image.

Layout: After clicking on the layout icon, a list of various layout options appear. Click on the desired layout to apply it.

Toggle Cursor Visibility: Cycles through available cursor styles and turns cursor on and off.

Information Display: Displays or hides case information embedded in the data.



View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the **Volume Render View Sequence** section (pg. 64) for additional information and description.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Endo: Control Panel

Volume of Interest:

- **Select Tooth:** After clicking this button, click either on the 2D slices or 3D volume to create a box. In the 2D slices, click and drag the center of the box to move it. Click on the nodes or borders to change the size. Click on the arrows to rotate the box. After the box is aligned with the desired tooth, right-click or click **Apply** to segment the region within the box into a volume of interest (VOI).
 - If a VOI has already been created, clicking **Select Tooth** provides the options to edit the current VOI or create a new one.
- **Cancel:** Cancels the Select Tooth process.
- **Reset:** Resets the current VOI to the original scan.

Layout:

Changes the right section of the rendering window.

- **Volume:** Displays the volume rendering of the VOI if one has been created or the original scans.
- **Axial:** Displays the 2D slices along the z-axis of the VOI.
- **Lateral:** Displays the 2D slices around the z-axis of the VOI.
- **Endoscopy:** Displays a 3D slice along the z-axis of the VOI. The rendering type is set in the View Control section.

View Control:

- Color Presets: Teeth, Pulp, Bone, etc. allow better visualizations of certain anatomic structures, soft tissue profiles, airway, etc. This is achieved by displaying specific densities with specific colors. Certain options may not be available until the creation of a VOI.

- Threshold: Filters the H.U. values that are visible in the volume rendering
- Brightness & Contrast: Can be adjusted for each of the presets to enhance the image.
- Sharpening Filter: Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.
- Slice Thickness: Uses ray sum when reconstructing the 2D image along each orthogonal plane.
- Rendering: “Performance” is fast but there are some rendering artifacts. “Quality” gives the highest level of detail, but response is slower. “Default” is in between the other two options.

Working Length:

- **Measurement:** Creates a working length measurement.
- **Clear All:** Deletes all working length measurements

3D Volume Clipping:

- When 3D volume is enabled, this option clips the volume for viewing the internal anatomy.

Save View Settings

- Saves the current 2D View settings to be reloaded upon opening any case. See the Display Preferences section in **Preferences** (pg. 17) for more information on which settings are saved for this specific tab.

Endo: Rendering Window

A 3D volume view and the axial, sagittal, and coronal slices are displayed by default. Other layouts exchange the 3D volume for additional slice or endoscopy views.

Slice view: Axial and sagittal slices are available. Airway measurement is created in the sagittal slice. Profiles are displayed after measurement creation. Clicking on the airway subsequently displays the edit widget.

3D volume view: The 3D volume can be manipulated as in other tabs.

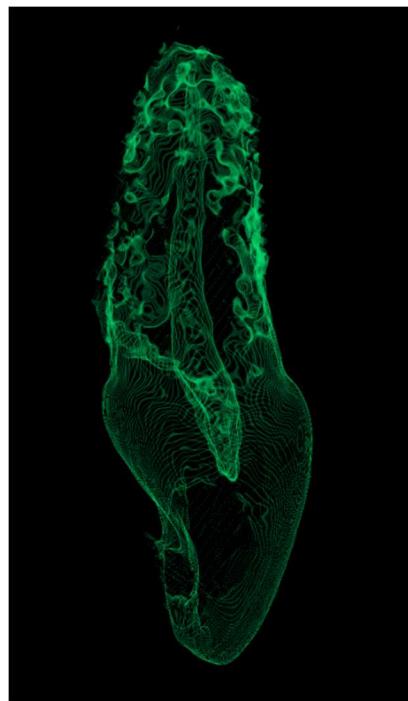
Axial, Endoscopy layouts: These views display nine z-axis slices that can be scrolled through axially. Green lines corresponding to each of the slices are visible in the sagittal and coronal slices.

Lateral layout: These views display nine z-axis slices that can be scrolled through laterally. Green lines corresponding to each of the slices are visible in the axial slice.

Endo: Volume of Interest

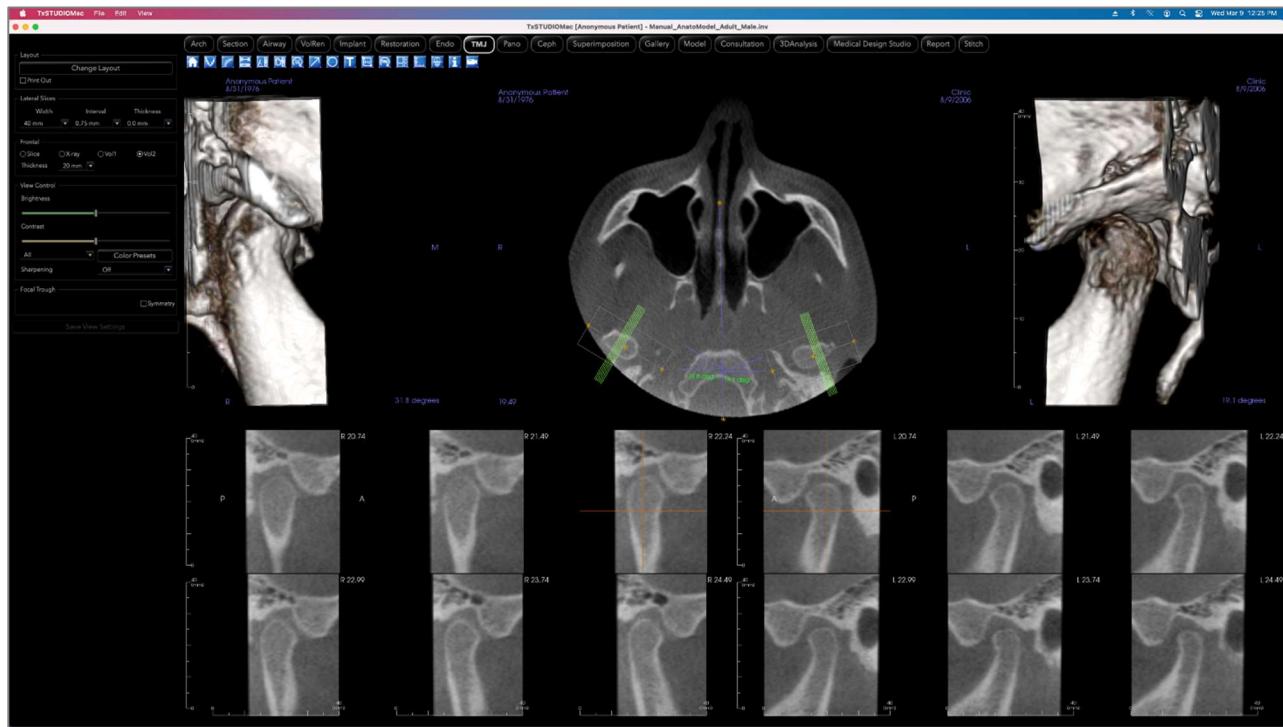
Creating a volume of interest (VOI) allows for focusing mainly on the tooth of concern and removes any surrounding material that may obscure the view. This process creates a region oriented around a particular tooth and generates the corresponding 2D slices aligned with the tooth axes.

To start, click on **Select Tooth**.


The cursor transforms into a “+” shape, and clicking on a 2D slice or the 3D volume places a box.

The box can be adjusted with the widget in the 2D slices. Click and drag the box to move it. Click and drag the yellow nodes to resize it. Click and drag the arrows to rotate it. Press the “a” key to realign the box to the slice.

Once the box is positioned properly, click **Apply** or right-click to segment the VOI. Clicking on **Select Tooth** again allows for editing the current VOI or creating a new one. The Freehand Sculpture and Polygon Sculpture tools can be used to further sculpt out unwanted portions of the volume. **Reset** restores the starting volume.


The different View Presets can be applied to the volume by clicking on the desired preset:

Sculpted volume with Pulp View Preset.

TMJ View Features

The **TMJ View Tab** displays two independent focal troughs generating cross sections of each TMJ, along with corresponding coronal and axial views. The **TMJ View Tab** also displays the TMJ in 3D volume rendering options.

TMJ: Toolbar

Shown below are the Toolbar and tools that are loaded with the TMJ View Tab:

Reset: Resets the window to the original view.

Create Arch Spline: After selecting this tool, create a new arch spline or edit an existing arch spline.

Left-click to place nodes along the arch. Right-click or double-click to finish the arch spline. To modify an existing arch spline, drag the nodes to the desired positions. To move the arch while maintaining its shape, click and drag the central spline.

Arch Spline Ruler: Places ruler along the arch spline for easy reference.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it.

Area Measurement: After selecting this tool, click multiple points along the boundary of the desired area. Double-click or right-click to end the measurement. A number in millimeters squared automatically displays. Click on the measurement and press the “fn” + “delete” keys to delete it.

Reorientation: Adjusts the patient orientation and the visible range of the scan.

Arrow Notation: Allows an arrow to be drawn on the image.

Circle Notation: Allows a circle to be drawn on the image.

Text Notation: Allows text to be written and edited on the image.

H.U. Measurement: Calculates the HU value of an area within a bounding rectangle, circle, or ellipse. The measurements will display alongside the shape and can also be repositioned by dragging. The information updates when the box is moved or if the user scrolls.

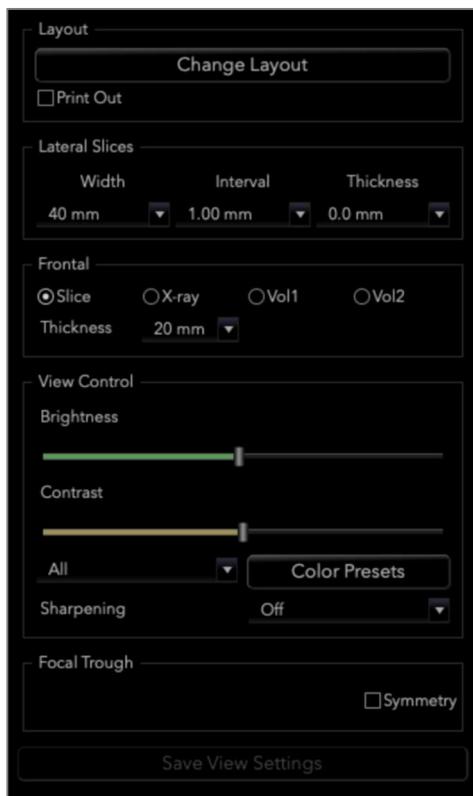
Rotate Focal Troughs: This function will rotate the focal troughs 90 degrees in opposite directions. Warning: Sequence direction depends on focal trough direction. Medial and lateral may be flipped if the focal trough angle is in the opposite direction.

Layout: After clicking on the layout icon, a list of various layout options appears. Click on the desired layout to apply it. A custom layout can be created and loaded.

Grid: Toggles between two different grid layouts for use in all of the section frames allowing quick assessment of measurements and spatial location.

Toggle Cursor Visibility: Conceals or displays cursors.

Information Display: Displays or hides case information embedded in the data.



View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the Volume Render View Sequence (pg. 64) section for additional information and description.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

TMJ: Control Panel

Layout

- Change Layout: Switch to different layout options.
- “Print Out” mode shows the image in life size and allows for capturing and printing in life size if captured to Gallery tab.

Lateral Slices

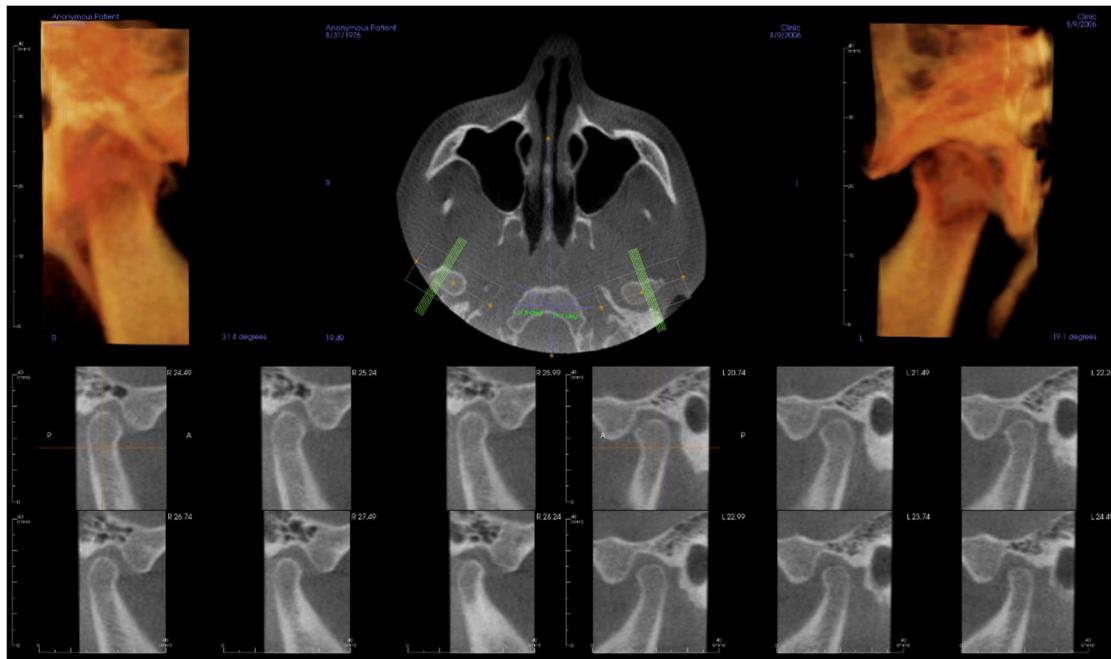
- “Width” changes the width of the slices.
- “Interval” changes the interval between the cross-sectional slices.
- “Thickness” adds multiple slices together for ray sum visualizations.

Frontal

- Change the visualizations of the coronal slices of the TMJ.
 - Slice – Gray Scale rendering
 - X-ray – X-ray rendering
 - Vol1 – Teeth rendering
 - Vol2 – Bone rendering
- Use the Thickness drop-down to create a ray sum view.

View Control

- Use Brightness & Contrast to adjust the image.
- The “All” drop-down allows for adjusting the brightness/contrast in different areas independently.
- Color Presets can be used to view the images in different colors.
- Sharpening Filter: Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.


Focal Trough

- Click on the “Symmetry” box to keep the focal trough angles symmetrical.

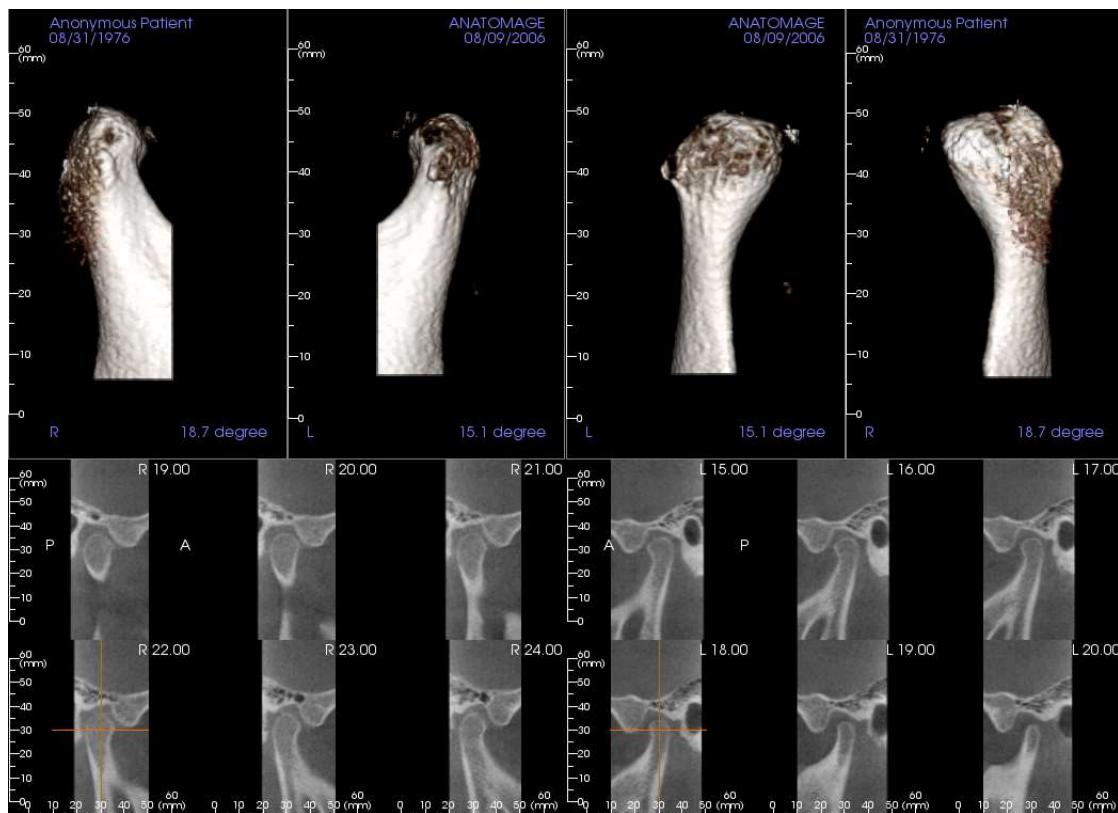
Save View Settings

- Saves the current 2D View settings to be reloaded upon opening any case. See the Display Preferences section in **Preferences** for more information on which settings are saved for this specific tab (pg. 17).

TMJ: Rendering Window

Please refer to **Image Navigation (pg. 30)** for information about controlling and adjusting these images.

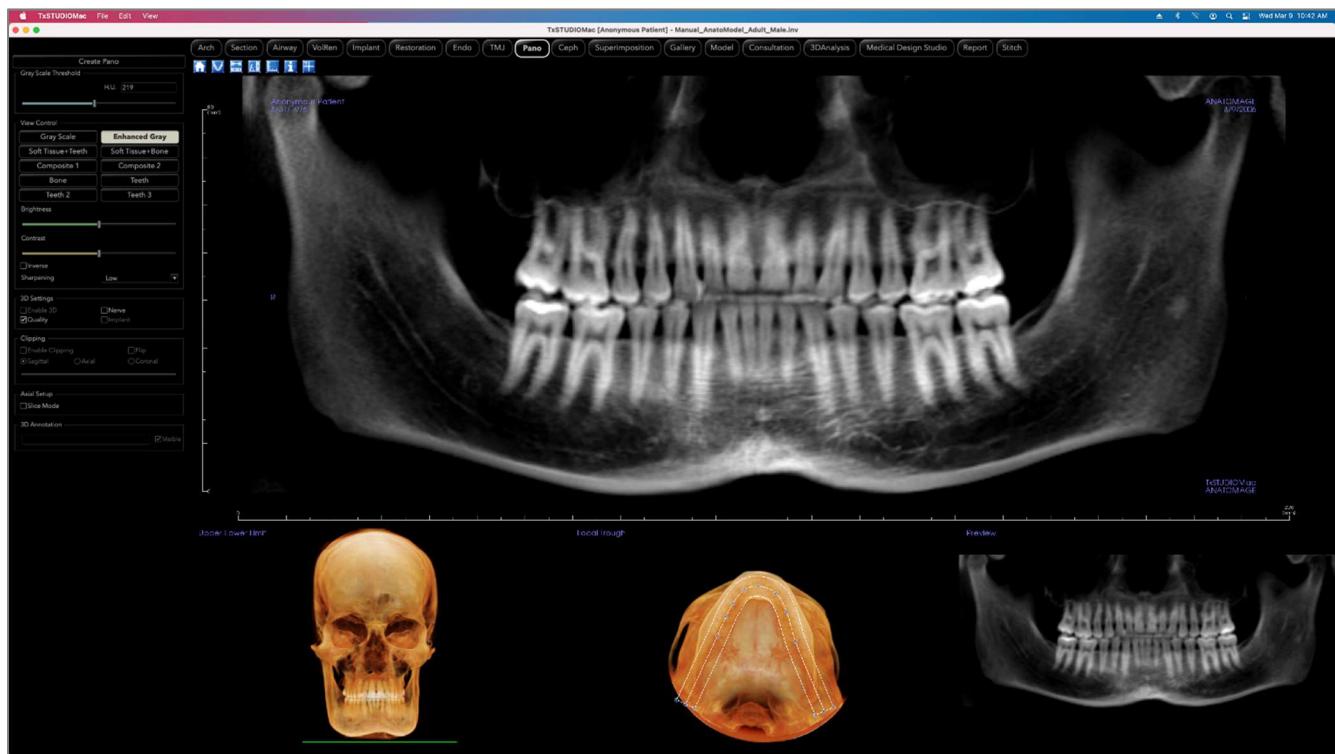
Arch Spline (Focal Trough) Navigation


- Endpoints: Clicking and dragging either endpoint of the focal trough can shorten/lengthen the focal trough or rotate the focal trough, depending on the direction that it is dragged.

Warning: Sequence direction depends on the focal trough direction. Medial and lateral may be flipped if the focal trough angle is in the opposite direction.

- Cross Section Indicators: Clicking and dragging the stack of green lines will scroll the cross sections through the focal trough in that direction.
- Focal Trough Box: Clicking and dragging any one of the lines forming the shape of the focal trough will move the entire focal trough.

TMJ: Layout



Many of the various layout options of the TMJ Tab feature frontal views of the condyle. Some layout features include:

- Two frontal volume views for each condyle, as seen above.
- Free rotation of the volumes after Vol1 or Vol2 have been activated.
- Sculpting operations carry over from Volume Render: The condyles can be segmented out using sculpting tools in the Volume Render Tab. These operations are carried over automatically to the TMJ Tab.

Super Pano View Features

The **Super Pano View Tab** can construct and display an enhanced version of a panoramic radiograph, take measurements, and utilize several image enhancement features. It also has the ability to render a pano into a volumetric 3D image that can be rotated for greater visual advantages.

Super Pano: Toolbar

Shown below are the Toolbar and tools that are loaded with the Super Pano View Tab:

Reset: Resets the rendering window to the original view.

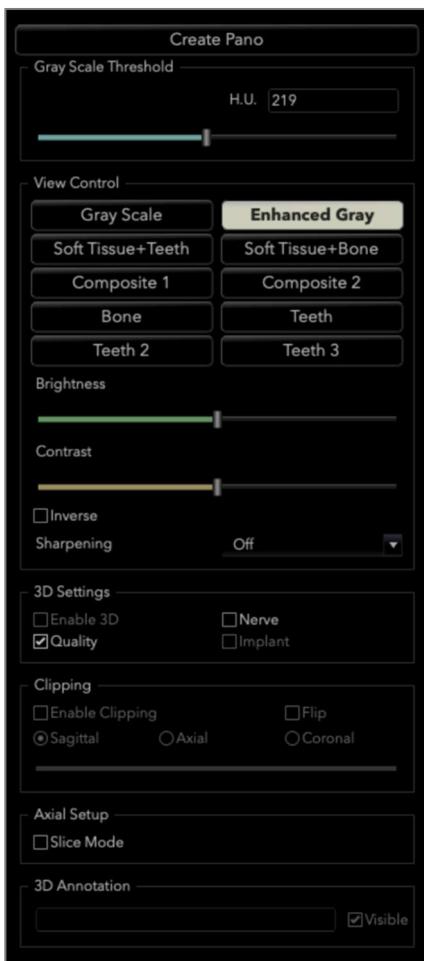
Create Focal Trough: Sets the boundaries of the Super Pano. A focal trough is automatically set but can be adjusted or recreated entirely. Use the yellow dots to stretch, widen, or reshape the focal trough. The focal trough selects only the desired anatomy and excludes others such as the spine, which traditionally appears in panoramic radiographs as background noise.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display.

Angle Measurement: After selecting this tool, click the first point, then click the vertex, then click the last point to create an angle. A number in degrees will automatically display.

Grid: Toggles between three different grid layouts for use in all of the section frames allowing quick assessment of measurements and spatial location.

Information Display: Displays or hides case information embedded in the data.



Comment Marker: Pick a point in the panoramic and enter comments.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Super Pano: Control Panel

Create Pano

- The upper-lower limit is adjusted by left-clicking on a green line and dragging with the mouse. It specifies the vertical dimension of the pano that is being created.
- The focal trough is adjusted by left-clicking on the yellow points and dragging with the mouse. The length, width, and shape of the focal trough are adjusted to specify what will appear in the pano.
- A preview is also shown in the rendering window.
- The **Create Pano** button should be pressed after the upper-lower limit and focal trough are first adjusted.

Gray Scale Threshold

- This threshold sets the density limit in the pano.
- For noisy images, adjust the threshold so that the noise does not contribute to the pano.
- Threshold is usually set slightly below bone density.

View Controls

- Pano can be rendered in multiple visualizations.
- Enhanced Gray sharpens Gray Scale rendering.
- By default, Enhanced Gray is selected.
- Brightness & Contrast: Can be adjusted to enhance the image.
- Inverse: Switches the background to white (switches coloring for Gray Scale Rendering).
- Sharpening Filter: Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.

3D Settings

- Enable 3D: Select this feature to render the pano as a volumetric 3D image. The pano can be rotated, clipped, etc. like other volumes. (See **Image Navigation**, pg. 30.)
- Quality: Select this to give the highest level of detail for the generated pano.
- A traced nerve or placed implant can be toggled on/off with the “Nerve” and “Implant” boxes.

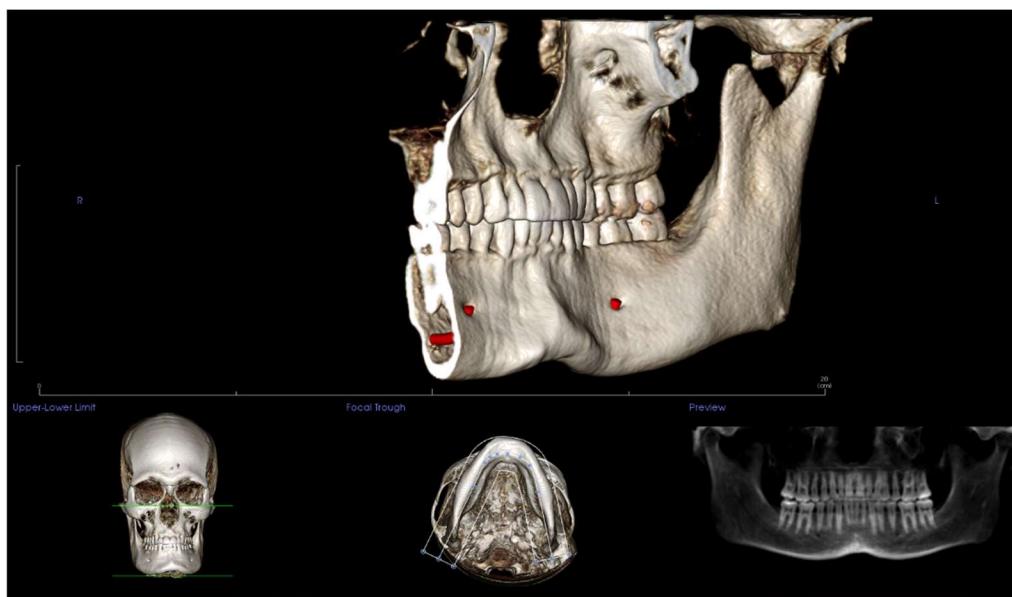
Clipping

- This option is only applicable when 3D Pano is available. Clipping hides some part of the image so that the internal structure can be visible.

Axial Setup

- The slice mode box sets how the focal trough is shown.

Annotation:

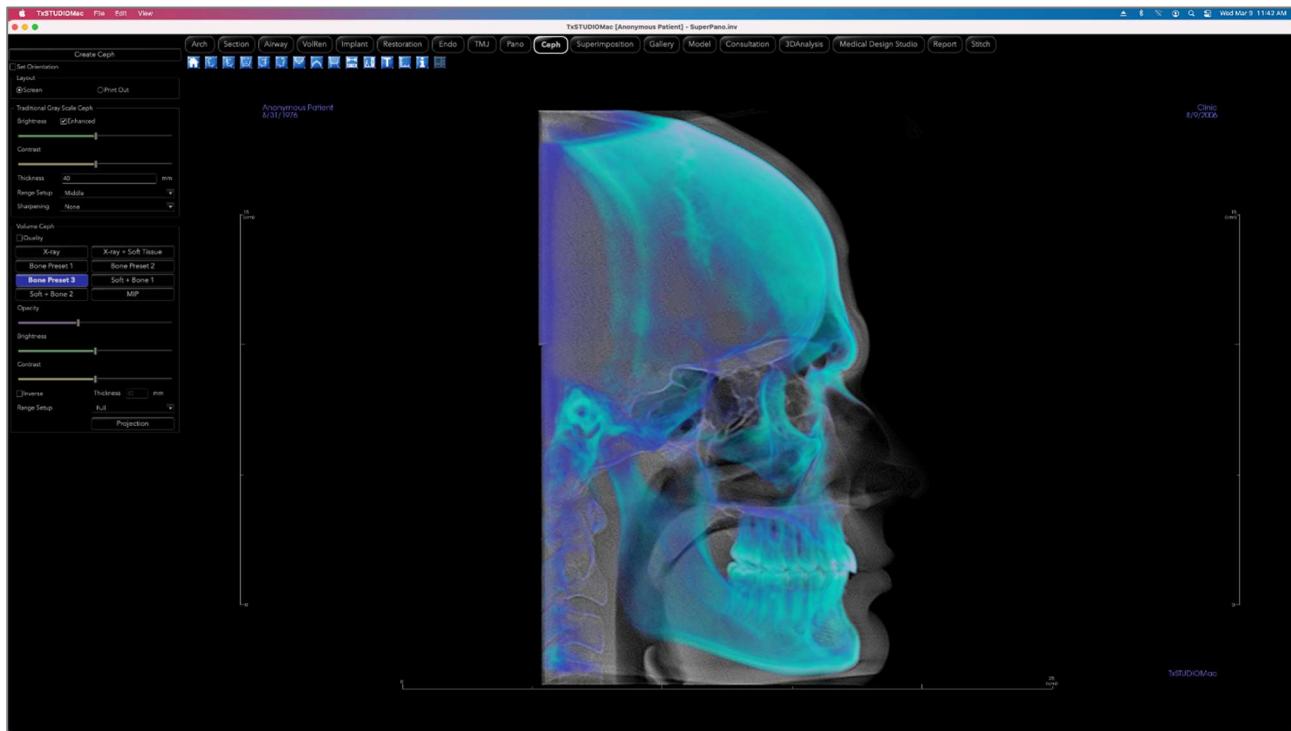

- Edits selected comment/annotation in the text field.
- Toggle added comments on/off by selecting “Visible.”

Super Pano: Rendering Window

Upper-Lower Limit: The lower left box where the vertical parameter of the Super Pano is set. The green lines indicate the vertical limits. They can be dragged to set the desired upper and lower limit of the Super Pano. When “Slice Mode” is selected, the red line indicates where the focal trough plane is and can also be adjusted.

Focal Trough: The focal trough is adjusted in the lower middle box. Whatever is contained within it will appear in the Super Pano allowing the construction of a panoramic x-ray with minimal background noise. The yellow dots can be left-clicked and dragged to adjust the length, width and shape of the focal trough. The focal trough can be adjusted by dragging the focal trough control points, or a new trough can be created by clicking the trough icon on the toolbar.

Preview: A preview of the Super Pano will be displayed in the lower right box before creating it. This feature allows a Super Pano to be efficiently made with fewer or no adjustments needed afterward.



How to make a good Pano?

- Make a U-shaped, narrow focal trough encompassing the arches by adjusting points on the focal trough.
- Adjust Gray Scale threshold to filter soft tissue, so that the image is not too dark or too light.
- Refer to **Image Navigation** (pg. 30) for information about controlling and adjusting these images.

Super Ceph View Features

The **Super Ceph View Tab** gives the ability to construct and view an enhanced version of a cephalometric radiograph, take measurements, and utilize several image enhancement features, all of which dramatically increases its diagnostic value.

Super Ceph: Toolbar

Shown below are the Toolbar and tools that are loaded with the Super Ceph View Tab:

Reset: Resets the rendering window to the original view.

Left: Automatically orients the volume so the patient is facing left sagittal.

¾ Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

¾ Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters automatically displays.

Angle Measurement: After selecting this tool, click the first point, then click the vertex, then click the last point to create an angle. A number in degrees will automatically display.

Text Notation: Allows text to be written and edited on the image.

Grid: Toggles between two different grid layouts for use in all of the section frames allowing quick assessment of measurements and spatial location.

Information Display: Displays or hides case information embedded in the data.

Layout: After clicking on the layout icon, a list of various layout options appears. Click on the desired layout to apply it. A custom layout can be created and loaded.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Super Ceph: Control Panel

Create Ceph

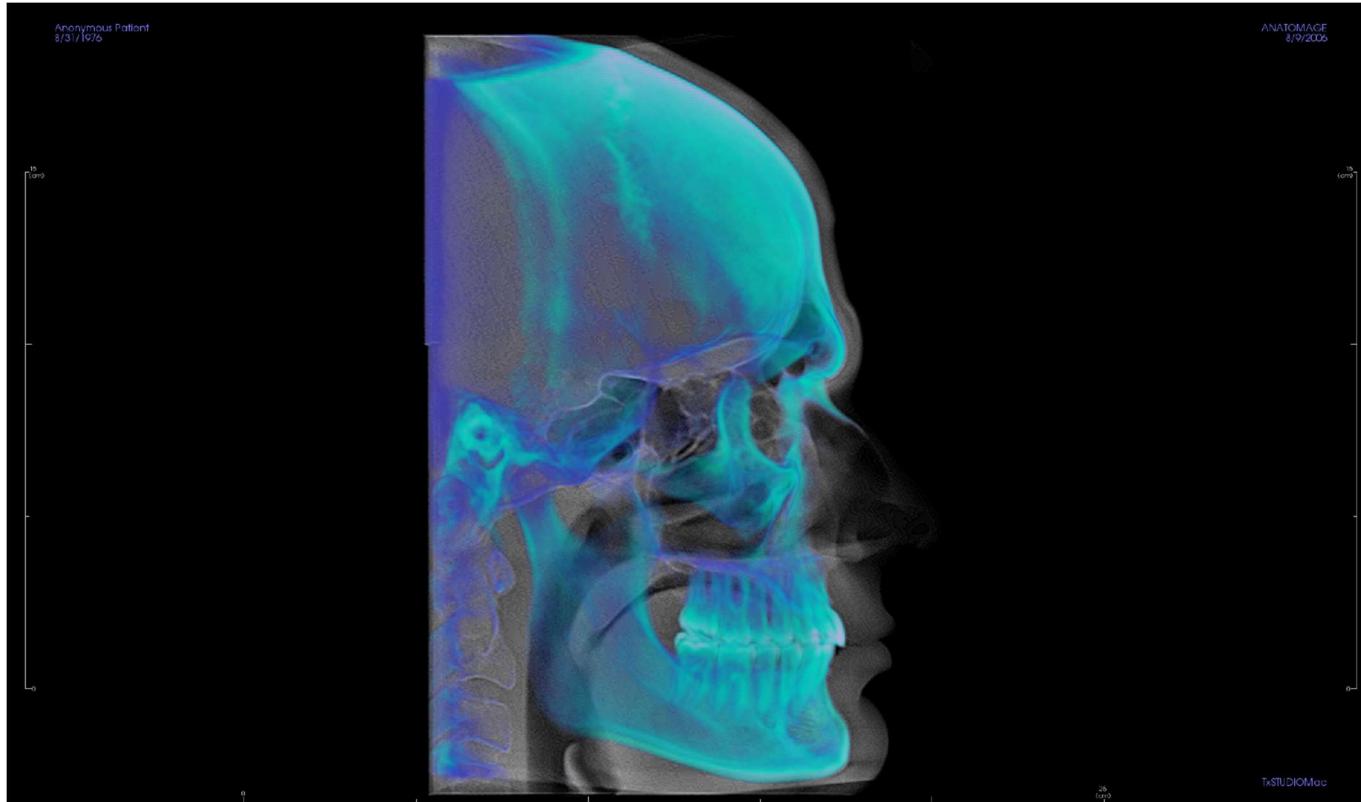
- The **Create Ceph** button should only be clicked after the orientation of the patient's volumetric image is adjusted in the rendering window.
- The “Set Orientation” box will reset the orientation if a ceph was created incorrectly. Once the image is orientated correctly, press the **Create Ceph** button again.

Layout:

- “Screen” layout is optimized for viewing the image on the computer screen. “Print Out” layout is optimized for printing the image on paper. With Print Out layout, the exact screen display is printed on the paper in life-size. First, capture to Gallery, then print from Gallery to ensure the image is life size.

Traditional Gray Scale Ceph

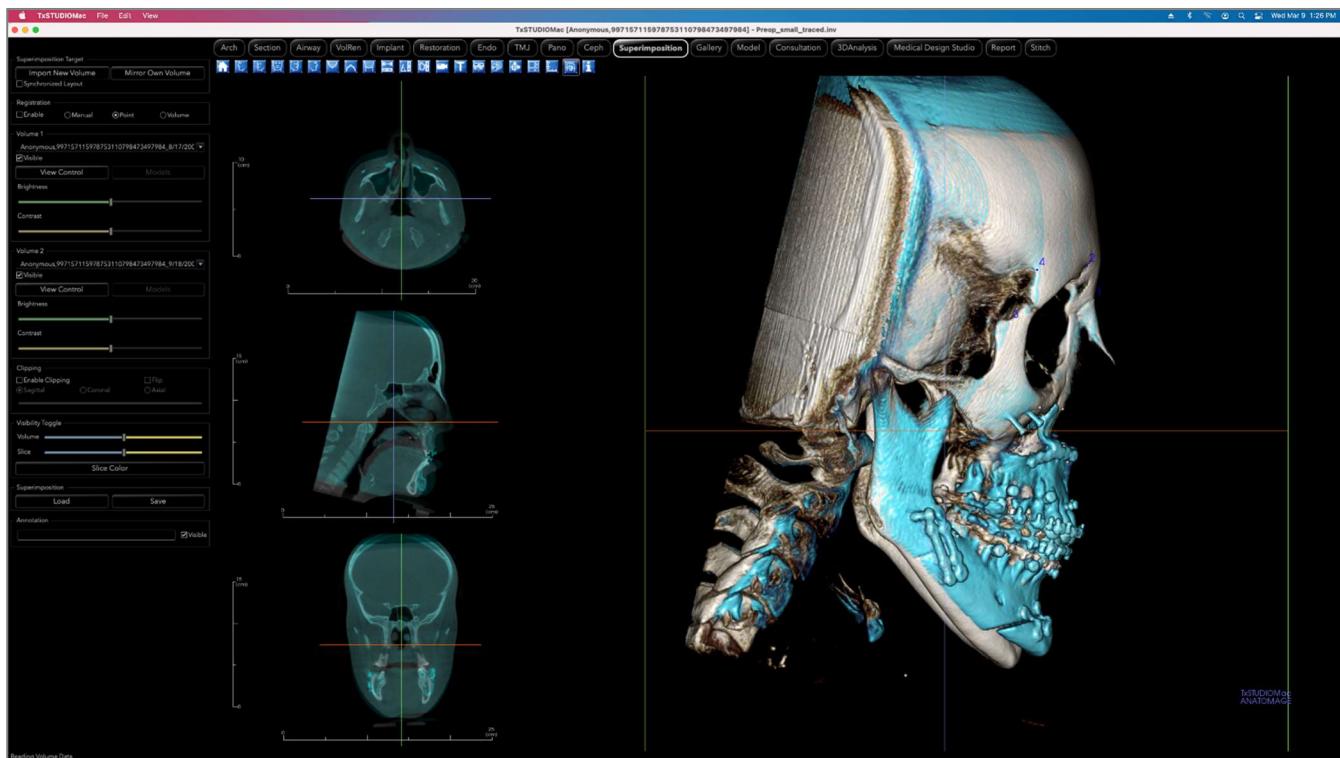
- Brightness and Contrast can be adjusted to enhance the image.
- The “Enhanced” box can be left-clicked on or off to sharpen and enhance the quality of the image.
- Range Setup sets the side of the patient's head the ceph is created from. Thickness controls the width of the range.
- When the Range Setup is changed, the ceph image must be recreated using the **Create Ceph** button.
- Sharpening Filter: Applies the selected sharpening filter from the drop-down menu to the 2D slice renderers.


Volume Ceph

- Increase the Opacity slider to superimpose the volume rendering onto the generated ceph.
- Various enhanced views of the ceph can be added; each has different advantages:
- Bone highlights hard-tissue landmarks.
- Soft+Bone emphasizes the soft-tissue on the ceph
- Opacity, brightness, and contrast can all be adjusted for image enhancement.
- Inverse switches the background to white. (Gray Scale coloring switches black/white.)
- Range Setup sets the side of the patient's volume that is superimposed.
- **Projection** provides options to switch between parallel views of the cephalometric images and perspective views which resemble the magnification found in traditional cephalometric radiographs.

Super Ceph: Rendering Window

This window is where the volumetric image of the patient is orientated to create a ceph and where the ceph will be viewed after creating it.


Before clicking on the **Create Ceph** button in the Control Panel, the patient's volumetric image must be correctly orientated. The easiest way to do this is to line up the left and right angles of the mandible. If the ceph is created with an improper orientation, it can be adjusted using the "Set Orientation" box in the Control Panel.

Please refer to **Image Navigation (pg. 30)** for information about controlling and adjusting these images.

Superimposition View Features

In the **Superimposition View Tab**, open two different scans at once, view them side by side, and superimpose them. This is especially useful for assessing pre- and post-treatment scans.

Superimposition: Toolbar

Shown below are the Toolbar and tools that are loaded with the Superimposition View Tab:

Reset: Resets the rendering window to the original view size.

Left: Automatically orients the volume so the patient is facing left sagittal.

¾ Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

¾ Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Distance Measurement: After selecting this tool, click two points to mark the desired distance. A number in millimeters will automatically display.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it.

Area Measurement: After selecting this tool, click multiple points along the boundary of the desired area. Double-click or right-click to end the measurement. A number in millimeters squared automatically displays. Click on the measurement and press the “fn” + “delete” keys to delete it.

Text Notation: Allows text to be written and edited on the image.

Comment Marker: Pick a point in the volume and enter comments. Type the desired text label and press **OK**.

Point Registration: This icon is used to register the original volume to the second volume. Four or more anatomical points are chosen from each scan to properly align both scans at common, stable landmarks.

Volume Registration: This icon is used to open the Volume Registration interface for automatic superimposed volume registration. Users will define a VOI (Volume of Interest) Box as a reference for automated superimposition.

Manual Registration: This icon is used to make adjustments to better align the two volumes that are superimposed.

Layout: After clicking on the layout icon, a list of various layout options appears. Click on the desired layout to apply it. A custom layout can be created and loaded.

Grid: Toggles between two different grid layouts for use in all of the section frames allowing quick assessment of measurements and spatial location.

Toggle Cursor Visibility: Conceals or displays cursors.

Information Display: Displays or hides case information embedded in the data.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Superimposition: Control Panel

Superimposition Target:

- Select **Import New Volume** to import a second volume. Superimpose either an Invivo file (.inv) or DICOM (.dcm) scan set. Multiple scans can be loaded.
- Volumes will be registered to each other by selecting four or more landmarks on each volume using the **Registration** tool.
- Select **Mirror Own Volume** to mirror the patient's anatomy to check for asymmetries.
- **Synchronized Layout** can be toggled to display the volumes side by side.

Volume 1 and Volume 2:

- Imported and mirrored volumes are added into the drop-downs.
- **Visible** turns on/off either volume independent of each other.
- **View Control** sets different visualization presets for the volume.
- **Models** allow the visualization or hiding of the models available to the respective volume. Model coloring differs between Volume 1 and Volume 2 models for visibility.
- The Brightness and Contrast in the volume renderings can be adjusted independently and improve the image.

Clipping:

- Select “Enable” to slice the image along predefined anatomical planes (sagittal, coronal, axial).
- Select “Flip” to switch the view to the opposite side.
- Control Clipping with the scroll mouse or slider.

Visibility Toggle:

- **Volume:** Adjust the opacity of the original volume and superimposed volume. Set the slider in the middle to visualize both volumes in equal opacity. Set the slider to one side to visualize only one image.
- **Slice:** Adjust the opacity of the original gray scale slice and superimposed one. Set the slider in the middle to visualize both volumes in equal opacity. Set the slider to one side to visualize only one image. The **Slice Color** button displays the available slice color options.

Load Superimposition:

- Reload saved superimposition data.
- Select **Load** and choose the correct .vdata file.
- The superimposition file will be reloaded with the saved volume.

Save Superimposition:

- Save the superimposition data into an external file.
- In the dialog that appears, choose where and what filename to save.
- Invivo will save two files: .vdata and .odata

- .vdata: stores the registration points and superimposed volume information
- .odata: stores the original scan's volume orientation information

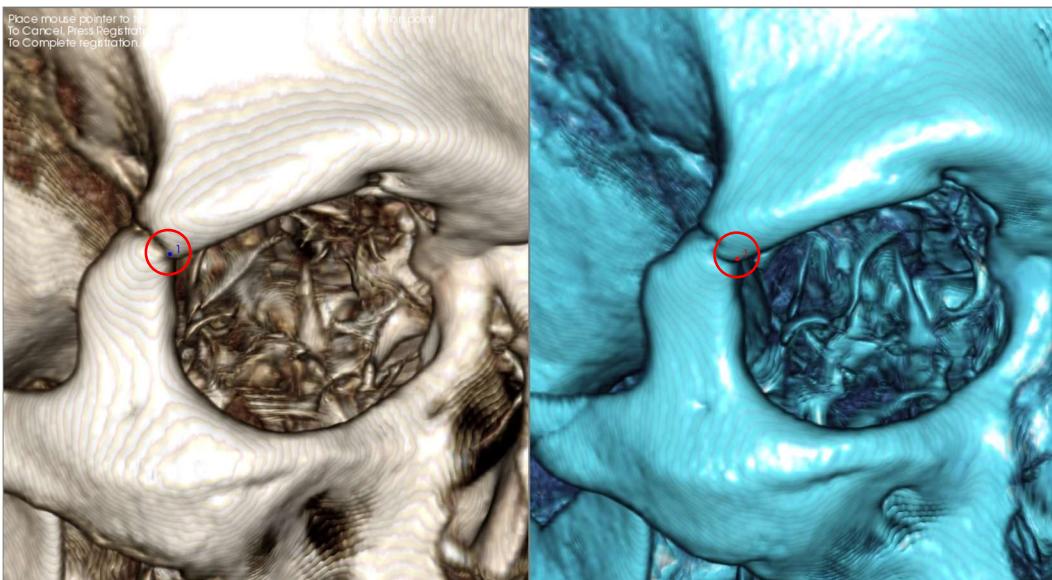
Annotation:

- Edits selected comment/annotation in the text field.
- Toggle added comments on/off by selecting “Visible.”

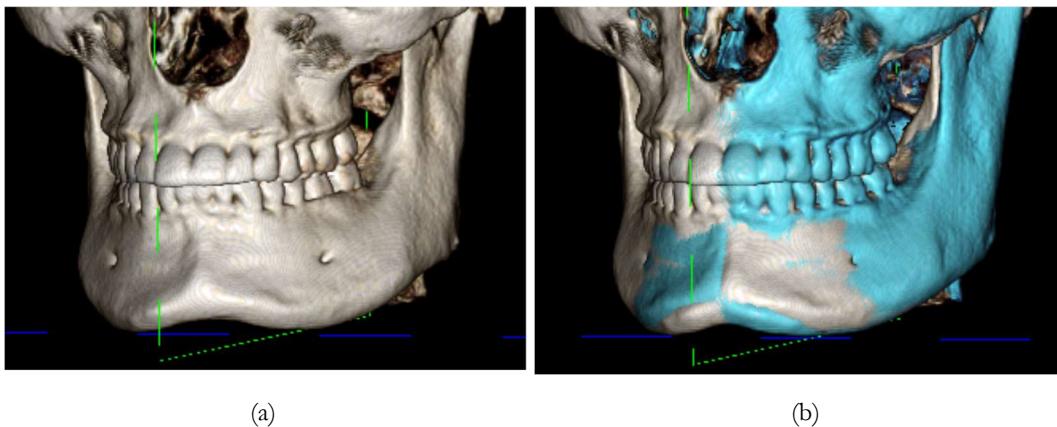
Superimposition: How to Superimpose Two Volumes

Invivo provides easy-to-use tools for superimposition. Although they are easy to use, superimposition is a technique-sensitive procedure with the most critical step being the registration of the new scan via the selection of stable landmarks in both scans. The proceeding sections discuss how to superimpose two scans step by step.

Step 1: Open First File. Open one of the files for superimposition. Files do not need to be opened in a specific order, but starting with the pre-treatment scan may be recommended for sake of organization. See **DICOM and Invivo File Loading** (pg. 21) section for instructions on opening an Invivo file.


Step 2: Import Volume. Go to the Superimposition Tab and from the Control Panel, click on the **Import New Volume** option to select the second file to open. The File Manager appears for loading either a DICOM file or an Invivo file.

Step 3: Press the Point Registration icon. It can be found in the Superimposition Toolbar.


Step 4: Registering the Two Scans to Each Other. In order to superimpose the scans as correctly and precisely as possible, strict attention must be placed in selecting at least four matching and stable landmarks in both scans.

- To select landmarks on each volume:
 - Press down on the center scroll-wheel of the mouse.
 - Or, position the mouse over the landmark and press the space bar on the keyboard.
- Select the first stable landmark on one scan using either method above.
- Select the matching stable landmark on the other scan using either method above.
 - Each point shows up as either a blue or red dot.
 - Points are numbered for easy reference.
 - Points can be undone by pressing $\text{⌘} + \text{Z}$.
- The volume can be rotated using the left-mouse button as before.
- The volume can be clipped by selecting Clipping: “Enable” in the Control Panel.
- The volume rendering presets can be adjusted using the **Preset** button.
- Use caution in setting the Brightness and Contrast settings.
 - Be sure the Brightness and Contrast settings for the original and imported volumes are similar.
 - Be sure to use the similar **Preset** settings when registering points.

The image above shows a registration point (Registration Point 1) located on the anterior point of the right zygomaticofrontal suture. The point has been added to both the original scan (white, left) and the new scan (blue, right).

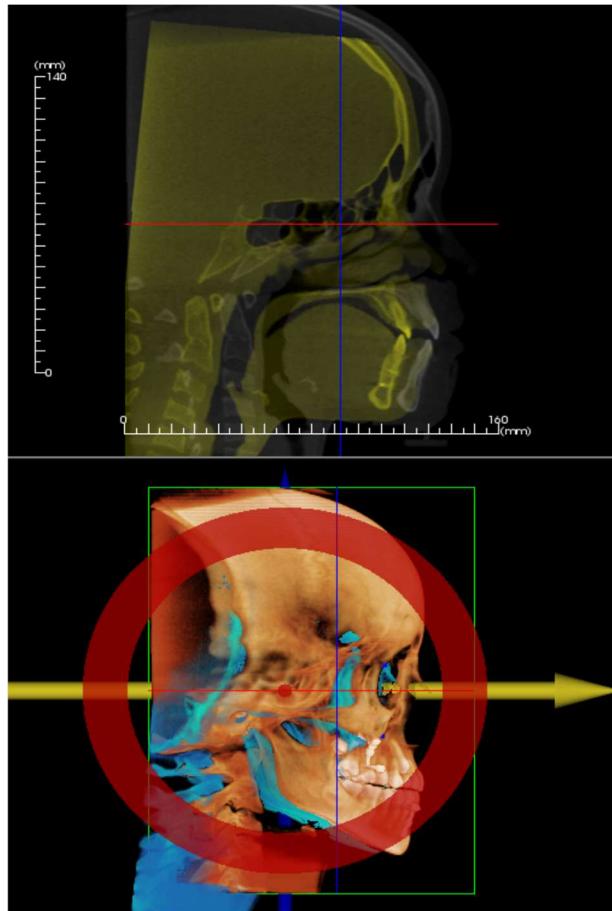
Step 5: Save Points and Finish Registration. Once all points are plotted one by one, click the right-mouse button to register the two scans. Practice registration by superimposing the same scan before trying to superimpose two different scans. The precision of the superimposition can be assessed by examining the two registered scans overlap using the 2D and 3D toggle tools.

(a) The above image on the left is of two identical data sets that are registered to each other precisely. Notice there are no overlapping areas of different colors.

(b) The image on the right is of two volumes not registered precisely. Notice the blue and white skeletal boundaries do not line up, and the presence of double images.

Superimposition: Using Registration Widget for Fine Adjustments

After finishing the landmark registration, the other tools provided in the Superimposition Toolbar can be used to make final adjustments to the superimposition.


To make the cross sections bigger, use the **Layout** icon from the Toolbar

To move the volume manually, use the **Manual Registration** icon from the Toolbar to display the move widget on the superimposed volume

The above tools are available for use prior to using the Landmark Selector; however, it is strongly recommended to first use the **Point Registration** tool before using the **Manual Registration** tool.

Check the cross sections for accuracy by adjusting the Layout (**Layout** icon) and the 2D Gray Scale Toggle slider. The superimposition is shown in 3D as well as in the cross sections. Make the necessary adjustments.

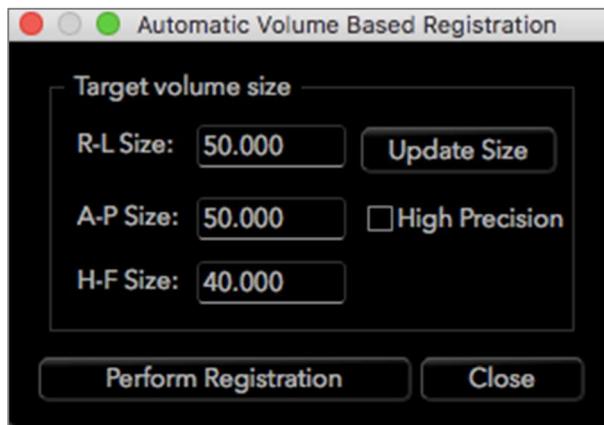
For example, notice in the sagittal section shown to the left that the superimposed volume is not totally overlapped. Using the **Manual Registration** tool, move the volume in the anterior-posterior direction until the sections align by clicking on the yellow arrow in the move widget and dragging it forwards or backwards.

One should go through each anatomical plane to check for precision. The cranial base should match up perfectly because it is stable; however, the vertebrae will usually be off because the patient's head is always tilted somewhat differently in each scan.

Superimposition: Using Volume Registration for Fine Adjustments

After finishing the landmark registration, the other tools provided in the Superimposition Toolbar can be used to make final adjustments to the superimposition.

To make the cross sections bigger, use the **Layout** icon from the Toolbar

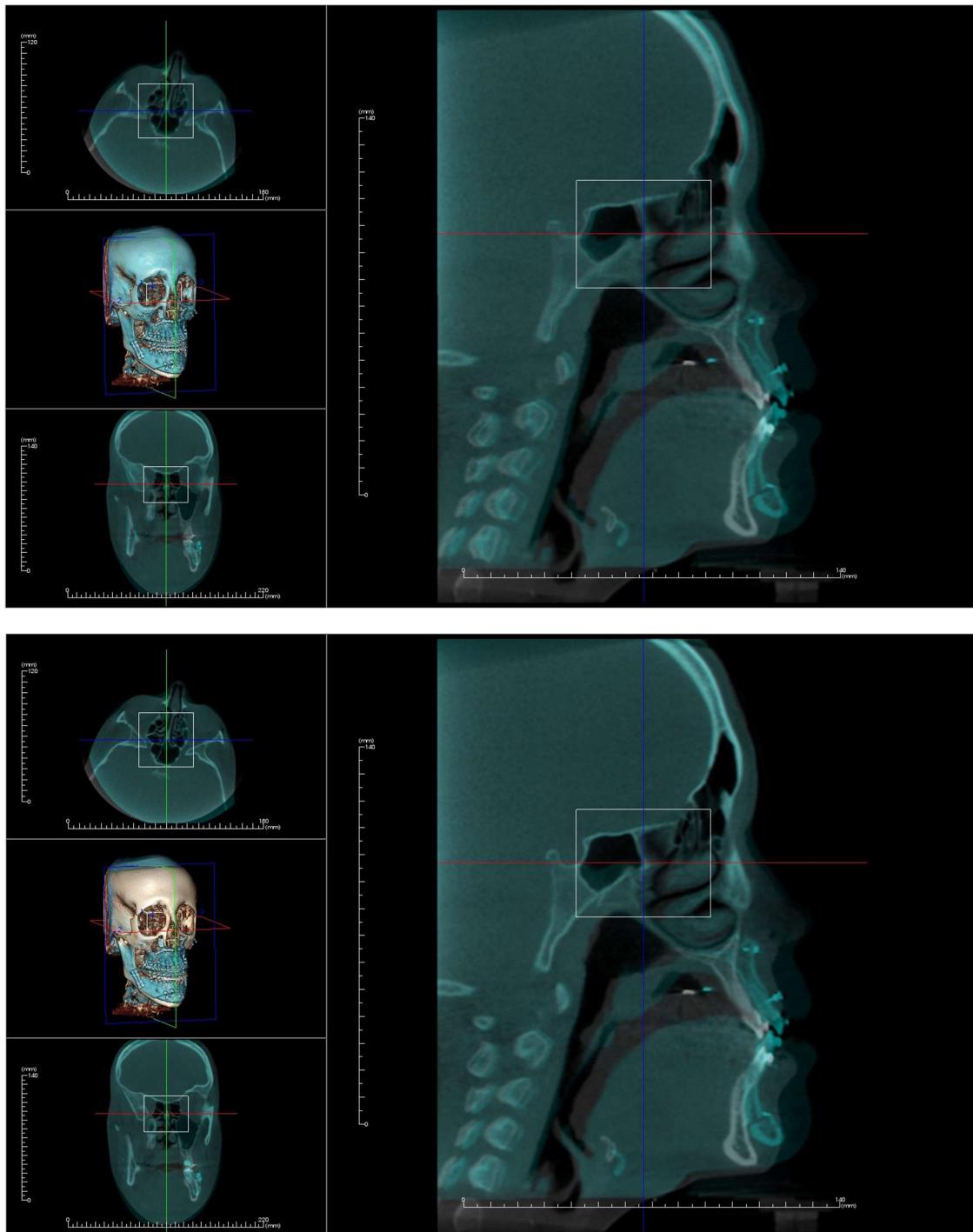


To fine-tune the registered volumes, use the **Volume Registration** icon from the Toolbar to open the Volume Registration interface

The above tools are available for use prior to using the Landmark Selector; however, it is strongly recommended to first use the **Point Registration** tool before using the **Volume Registration** tool.

Select the **Volume Registration** icon in the toolbar to open the Volume Registration interface.

Left-click on any of the 2D cross sections to place the center of the VOI (Volume of Interest) Box. The VOI box can be moved at any time by clicking and dragging it to another location in one of the 2D cross sections.


Target Volume Size:

- R-L Size: defines the lateral width (mm) of the VOI Box.
- A-P Size: defines the anterior-posterior width (mm) of the VOI Box.
- H-F Size: defines the inferior-superior height (mm) of the VOI Box.
- Press **Update Size** to show the updated VOI Box size in the rendering window.
- The bounding box may also be edited in the 2D view by clicking and dragging either the boundary lines or the corner nodes.

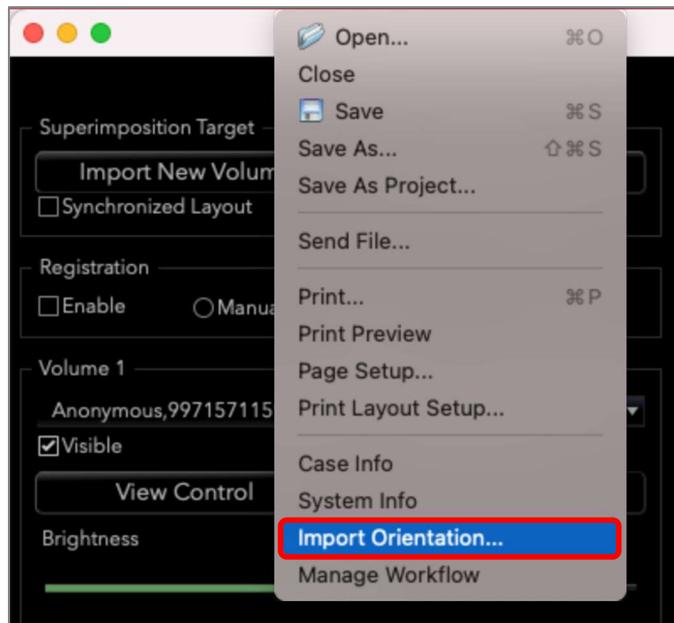
Select **Perform Registration** to run the automatic registration process for the VOI Box selected. The process time is based on the computer's hardware components; however, in general, the larger the VOI Box, the more time is required to complete the automatic registration.

The following images show the VOI Box applied near the cranial base of a pre- and post-surgery superimposed scan (top image) and the results of the automatic registration process (bottom image).

Notice that the two cranial base profiles line up exactly following the automatic registration process. The VOI Box used is the default (x, y, z) = 50mm x 50mm x 40mm.

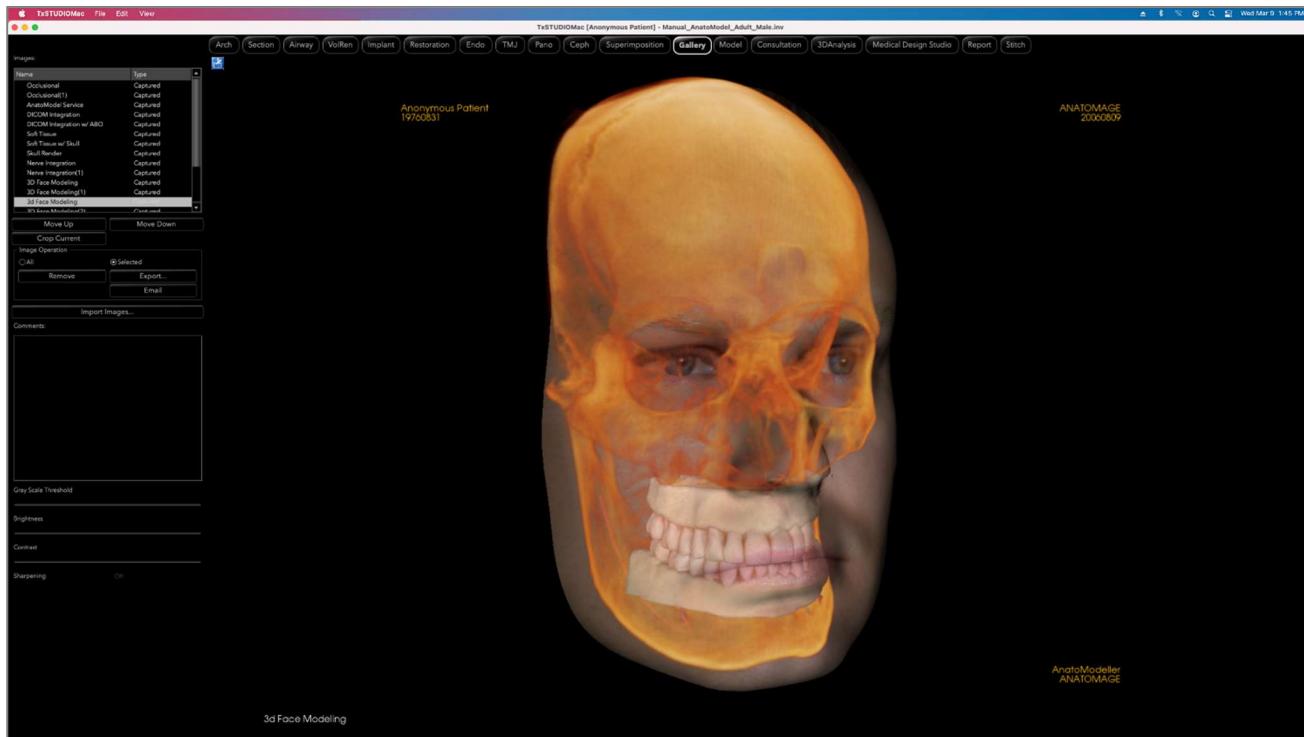
Superimposition: Difference Between .vdata Files and .odata Files

After successfully registering a different scan to the original volume data, Invivo can save the superimposition data using the **Save Superimposition** button. This section looks to further define the difference between the output files (.vdata and .odata) and how to use them.


.vdata

Information stored in the .vdata file includes the registration points and the path for finding the superimposed scan data. After re-opening the original scan, in the Superimposition Tab, press the **Load Superimposition** button and load the desired .vdata file. This loads the superimposed image in the correct position without having to re-register the landmarks.

.odata


Information stored in the .odata file includes the orientation information of the original scan data (not the superimposed scan). With this information, the specific orientation can be set for other cases as well.

To import a new orientation, go to File in the Menu Bar and select “Import Orientation.” Choose the desired .odata file, and the case automatically reorients itself.

Gallery View Features

The **Gallery View Tab** archives images that have been captured from other tabs. Additionally, images can be imported into *In vivo* or exported to a desired filepath. Comments or notes can be added to describe images that have been captured.

Gallery: Toolbar

Shown below are the Toolbar and tools that are loaded with the Gallery View Tab:

 Crop Image: Crop captured images to save as new images or replace the original.

Gallery: Control Panel

Images: Gives a list of all captured images.

- Each of these images has a “Name” and “Type” which can be renamed by double-clicking on the text.
- **Move Up/Down:** Moves the selected image up or down on the list.
- **Crop Current:** Crop the currently selected image within Invivo.

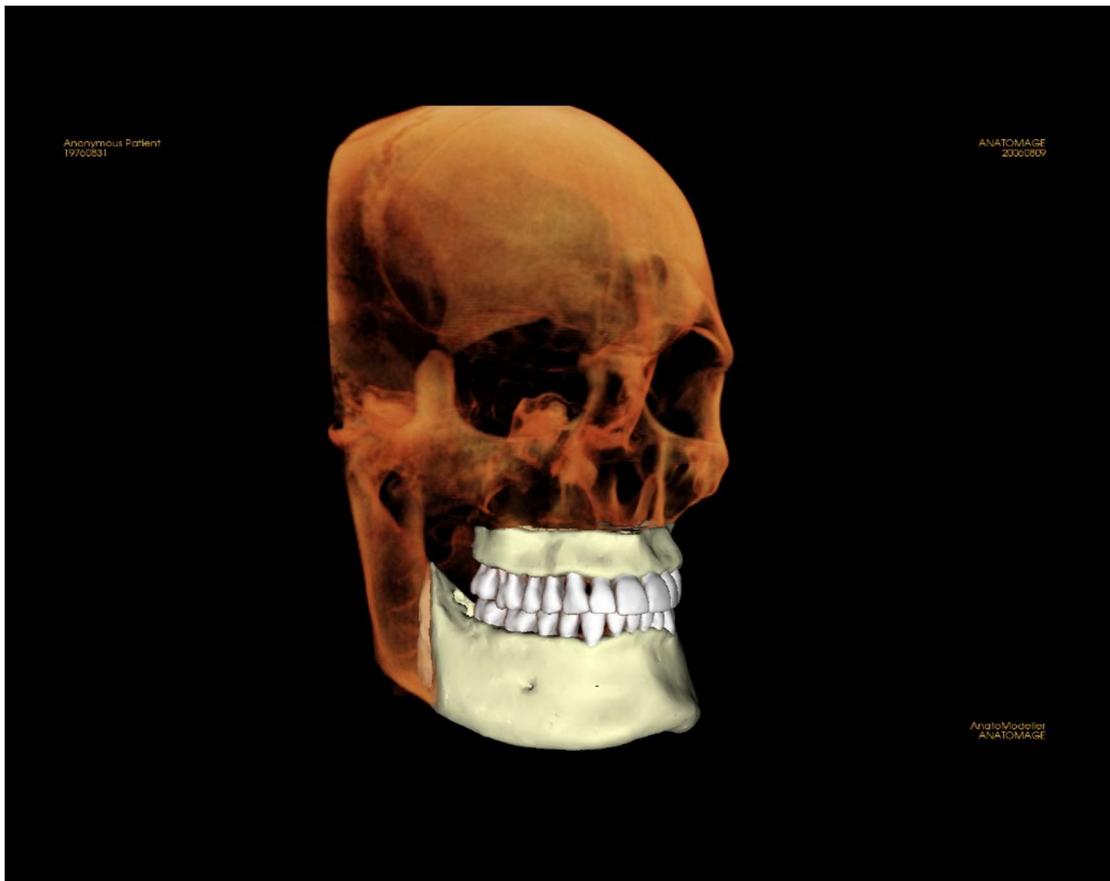
Image Operation

- All/Selected: Applies operation to all or a subset of the images from the list.
- **Remove:** Removes images from the Gallery.
- **Export:** Export the images in the Image List to a path specified in the dialog box that opens or to PACS if configured. Local files can be saved as one of the following formats: .jpg, .bmp, or .png. PACS files are stored as DICOMs.
-

Import Images:

- Select to import images (.jpg, .bmp, .png) from an external source into the Gallery Tab.
- Using this, patient photographs or 2D DICOMS can be imported into the Invivo software for storage within the Invivo file once saved.

Comments:


- Text box displays comments about the image displayed in the rendering window.
- Add or change comments by editing the text in the Comments Box.

2D Image Options:

- Controls settings for 2D images. See more information in Gallery: 2D Image Options.

Gallery: Rendering Window

This window allows the viewing of captured and imported images. The Gallery is particularly useful for creating a workup of a particular case. Remember that the Gallery's images will only be saved if the file is resaved; otherwise, any captured images will be lost.

Please refer to **Image Navigation (pg. 30)** for information about controlling and adjusting these images.

Gallery: Adding Images to the Gallery

Capture any single image to the Gallery. A single image within any view can be captured without including the other parts of the rendering window. When the Capture to Gallery function is used, a dialog will appear on the screen providing the user with options regarding which parts of the rendering window to capture.

The options provided by each dialog will vary according to which Invivo tab is currently displayed; the following example is the dialog that appears within the Section Tab:

Ex. Section Tab Capture to Gallery

Capture to Gallery Dialog:

- Whole View – Captures a screenshot of the rendering window
- Axial, Sagittal, Coronal – Captures the selected slice view and no other parts of the rendering window
- Custom Section – Captures the custom section and no other parts of the rendering window
- Volume – Captures the 3D volume only

Options within each Select Image to Capture Dialog:


Note: Some options will appear gray (disabled) in the Select Image to Capture dialog. The choices available are determined by the specific layout as well as the view tab.

Section	Whole View Axial, Coronal, Sagittal Slices Custom Section (Displays Custom Cross Section or 3D Volume)	
Volume Rendering	No Dialog	
ArchSection	Whole View Axial	Pano Cross Section
Super Pano	Whole View Pano Front Volume	Axial Preview Pano
Super Ceph	No Dialog	
Implant	Whole View Main Volume	Density Pano

	Axial Cross Section 1 Cross Section 2	Arch Volume Front Volume
Restoration	No Dialog	
Airway	Whole View Axial Sagittal	Airway Volume
Endo	Volume Layout	Whole View Volume Axial Sagittal Coronal
	Axial Layout	Whole View Axial Slices Axial Sagittal Coronal
	Lateral Layout	Whole View Lateral Slices Axial Sagittal Coronal
	Endoscopy Layout	Whole View Endoscopy Axial Sagittal Coronal
TMJ	Whole View Axial Left Frontal Left Frontal 2	Left Cross Sections Right Frontal Right Frontal 2 Right Cross Sections
Superimposition	Whole View Main Volume Axial	Coronal Sagittal Imposed Volume
Model	Normal Layout	No Dialog

	Occlusal Layout	Whole View Lower Occlusional Upper Occlusional
	Composite Layout	Whole View Composite 1-9

Capture to Gallery Dialog:

Name: Image label

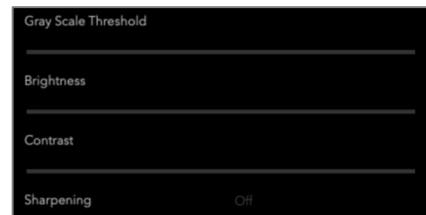
Note: Image name must be unique from any other captured image in the Gallery and must not contain any special characters.

Type: Image type – can be set from the drop-down to “Captured” or “Photo.”

Comments: Additional comments about the image can be added in this section.

Gallery: 2D Image Options

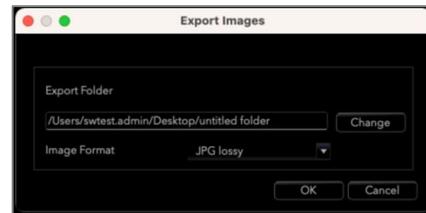
The Gallery Tab is compatible with 2D DICOM images and has several features that allow it to handle this image format better.


Opening 2D DICOM

When instructed to open a 2D DICOM image, Invivo will automatically enter a mode that disables 3D functionality. Only the Gallery Tab will be available within the software and the DICOM will appear as a Gallery image.

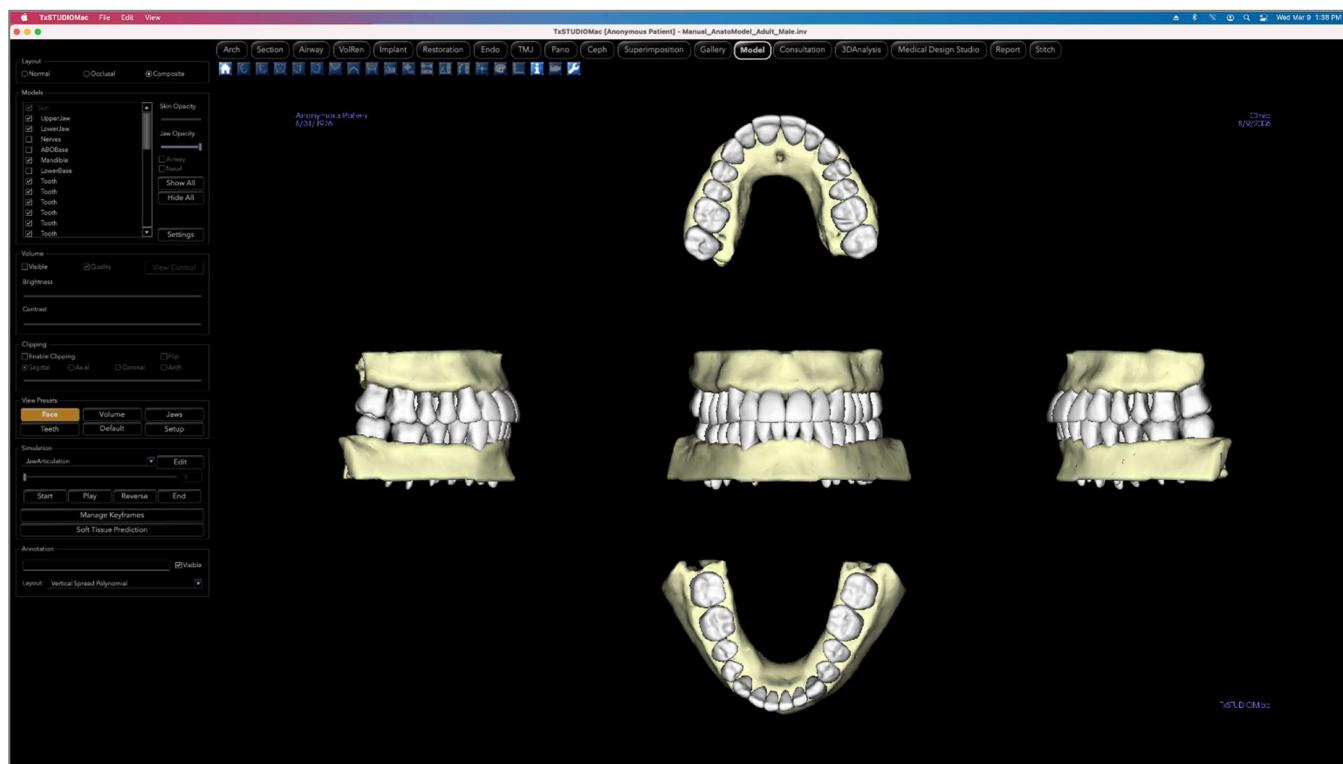
If a 2D DICOM is associated with a 3D volume as a scout image, opening the volume will automatically import that scout image into the Gallery Tab.

Grayscale Image Options


For grayscale images in the Gallery, the user has the option to adjust several settings such as Gray Scale Threshold, Brightness, Contrast, and Sharpening.

The updates to these images are saved and always reflect the updated settings when the image is selected in the Gallery and also after it has been saved/exported and then opened/imported back into Invivo.

Export to DCM/JPG/PNG/TIF/BMP


An image in the Gallery can be exported into any of the above formats when using the **Export...** button. When saving individual Gallery images to file, the following image formats will be available (JPG, PNG, BMP).

Model View Features

The **Model View Tab** allows the user to see the patient's *Invivo Model* or *3D photograph* and create surgical or orthodontic simulations, as well as *3D soft tissue predictions*. An *Invivo Model* is a *3D digital study model* that is made by Osteoid on a case-by-case service. The *DICOM data* of the patient is sent to Osteoid where it is modeled to create the most advanced *digital study model* available. *Invivo Models* contain *anatomy* such as *roots*, *developing teeth*, *impactions*, *alveolar bone*, and more, while other models merely show the *crowns* of teeth. The *3D photograph* service that Osteoid offers is also viewed here. Osteoid developed the technology to combine a *frontal photo* of the patient and the *CT scan* to create a *3D model* that overlays the *scan data*.

Any *nerve tracing*, *implant planning*, or *superimposition* that has been done will also be visible in the *Model Tab*. Each item can be independently turned on/off to see how all these systems come together with the *scan data*.

For additional information about the *Invivo Model* service, please contact Osteoid at (408) 333-3484 or email us at dental@osteoidinc.com.

Model: Toolbar

Shown below are the Toolbar and tools that are loaded with the Model View Tab:

Reset: Resets the rendering window to the original view size.

Left: Automatically orients the volume so the patient is facing left sagittal.

3/4 Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

3/4 Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Slice Explorer: Once activated, clicking on a point on the volume will open a 2D zoom window in that location. The zoom window can be scrolled through using the mouse wheel.

Marker: Select this option to mark a point on the volume and X, Y, Z coordinates (axial, sagittal, vertical) will appear. Clicking on the point and moving the cursor can modify points. Click on the point and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be hidden or exported to a report.

Distance Measurement: Select this option and mark two points on the volume and distance will appear. Clicking on the point and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Polyline Measurement: Select this option and mark any number of points on the volume. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

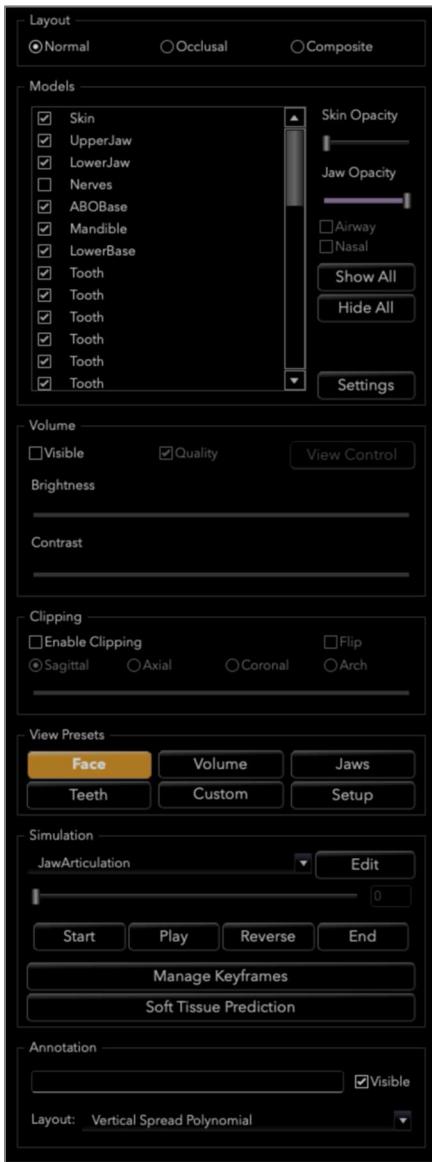
Comment Marker: Pick a point in the volume and enter comments. Type the desired text label and press **OK**.

Model Color: Allows for the model color to be changed.

Grid: Toggles between four different grid layouts for simple assessment of size, measurement, and spatial location.

Information Display: Displays or hides case information embedded in the scan data.

View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the View Sequence description in the Volume Render View section (pg. 64).



Settings: Allows option to view either parallel or perspective views in 3D.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Model: Control Panel

Layout:

- Normal shows the digital models in the normal patient orientation along with the volume rendering if desired.
- Occlusal shows both arches from the occlusal perspective.
- Composite shows a composite of multiple views of the model all at once.

Models:

- Models: The individual, digital models (implants, abutments, restorations, nerves, teeth, superimposition) can be turned on or off in the rendering window.
- Skin Opacity: Controls the opacity of the Skin model from the Invivo Model service or from 3DAnalysis.
- Jaw Opacity: Controls the opacity of the alveolar bone/ ABO base from the Invivo Model service.
- The Airway checkbox toggles the visibility of the airway measurement if one has been generated in the Airway Tab.
- Show All** and **Hide All** toggle the visibility of all the listed models.
- Settings:** Control settings for items in the Models list. A model must first be selected in this list before the button is pressed.

Volume:

- Select “Visible” to toggle the volume rendering on or off with the digital models.
- The **View Control** buttons allows volume rendering options, such as Soft Tissue, Teeth, etc.
- The Brightness & Contrast of the images can be adjusted with the slider.

Clipping:

- Select “Enable Clipping” to slice the image along the predefined anatomical planes (sagittal, axial, coronal). Control the clipping with the scroll mouse or the slider.
- To switch a view to the opposite side, select “Flip.”

View Presets:

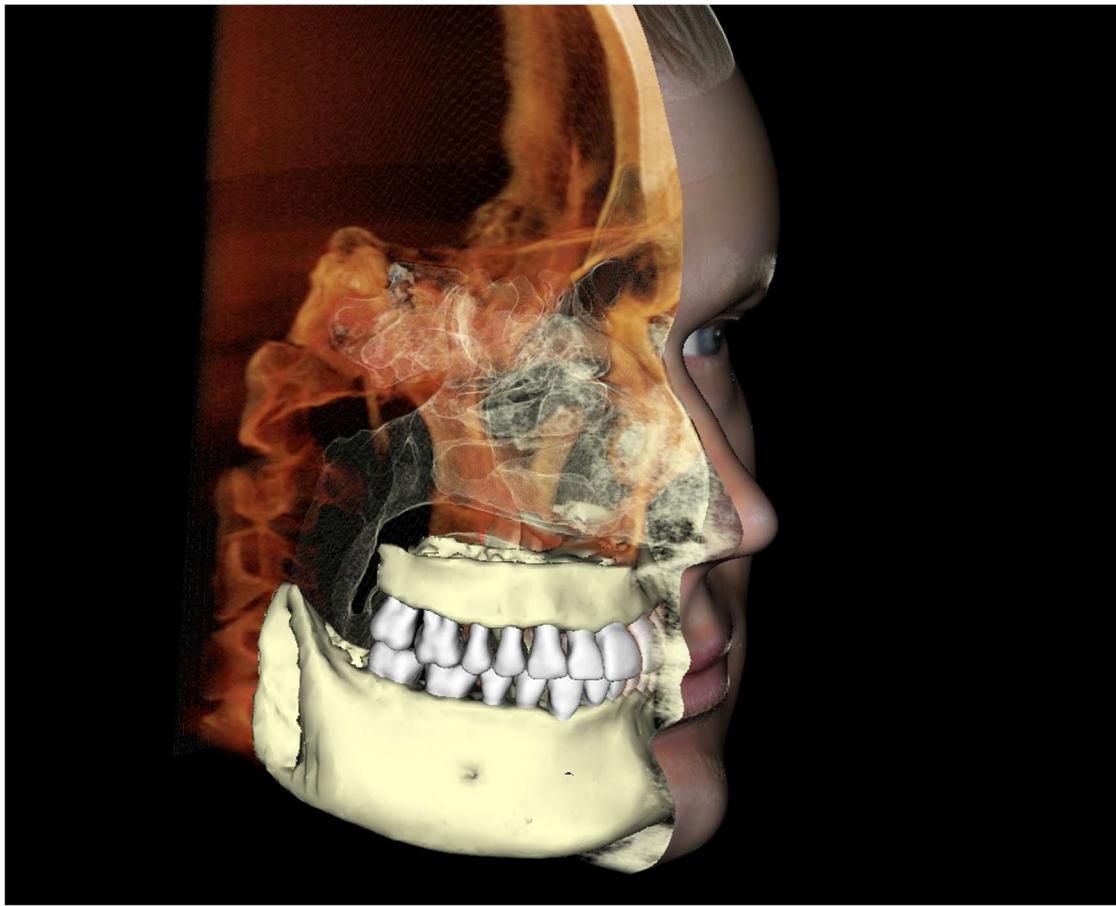
- Preset toggles that display predetermined views. A custom view can also be set.

Simulation:

To create a new simulation:

- Select either the TeethMovement or JawMovement simulations, or press **Edit** to create a new simulation.
- Move the slider to the right to indicate the ending point.
- Click on a digital model to move it (either individual teeth or whole arches) with the move widget.
- After the final position is reached using the 3D move widget, press **Start** to go back to frame one.

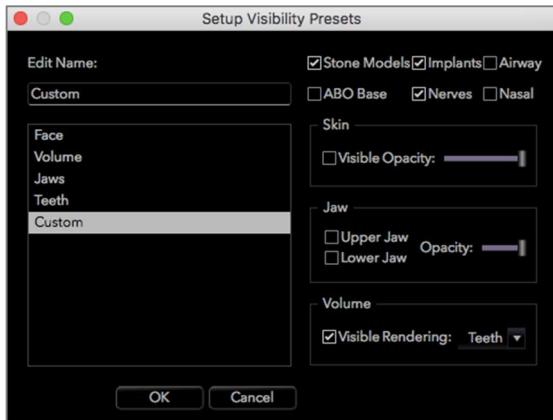
- Press **Play** to view the simulated movement.
- **Manage Keyframes** lists the frames that compose the simulation for the selected model. (See page 145)
- Press **Soft Tissue Prediction** to create a simulation of the soft-tissue prediction. This is only possible with the use of a 3DAnalysis face photo or Invivo Model Skin.


Annotation:

- Edits selected comment/annotation in the text field.
- Toggle added comments on/off by selecting “Visible.”
- Layout: Sorts all added comments in the rendering window based on selected setting (Horizontal, Stick to Point, User Dragged, Vertical, Vertical Spread Straight, Vertical Spread Polynomial).

Warning: Soft tissue prediction is an approximation and may not reflect actual results.

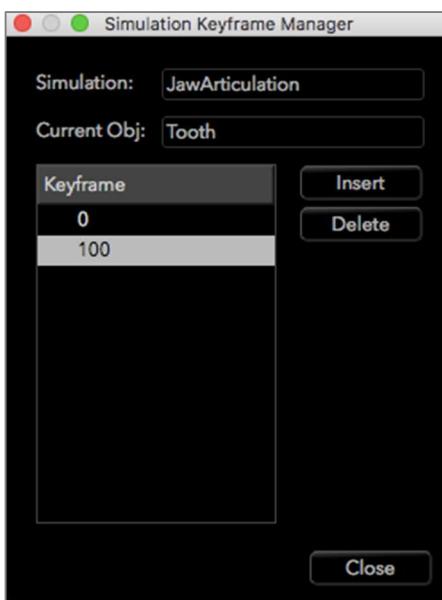
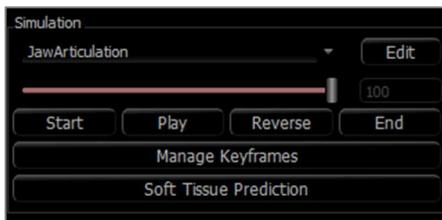
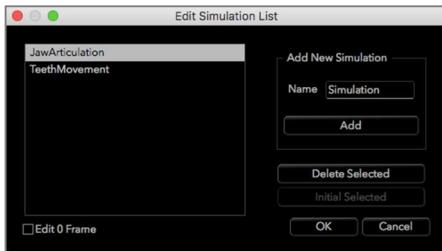
Model: Rendering Window



*This window allows the viewing of *Invivo Models*, 3D photographs, and simulation, all of which are services that must be ordered per case for this feature to work. These services provide excellent diagnostic data and case presentation material.*

Please refer to **Image Navigation (pg. 30) for information about controlling and adjusting these images.**

Model: Custom View Preset Setup




Visibility presets allow for easy switching between set views. The **Custom** option is set manually by the user. To configure these settings, click on **Setup**.

- Visibility checkboxes hide or show features in the rendering window.
- Skin Opacity: Controls the visibility of the face photo wrap from the Invivo Model workup file or 3DAnalysis. Varying degrees of transparency can be obtained with the slider.
- Jaw Opacity: Controls the visibility of the jaw models. Varying degrees of transparency can be obtained with the slider.
- Volume: Controls the visibility and rendering type of the 3D Volume

Model: Simulations

Simulations may be created using any of the model objects in the software, such as implants and restorations, as well as models created by the Invivo Model service.

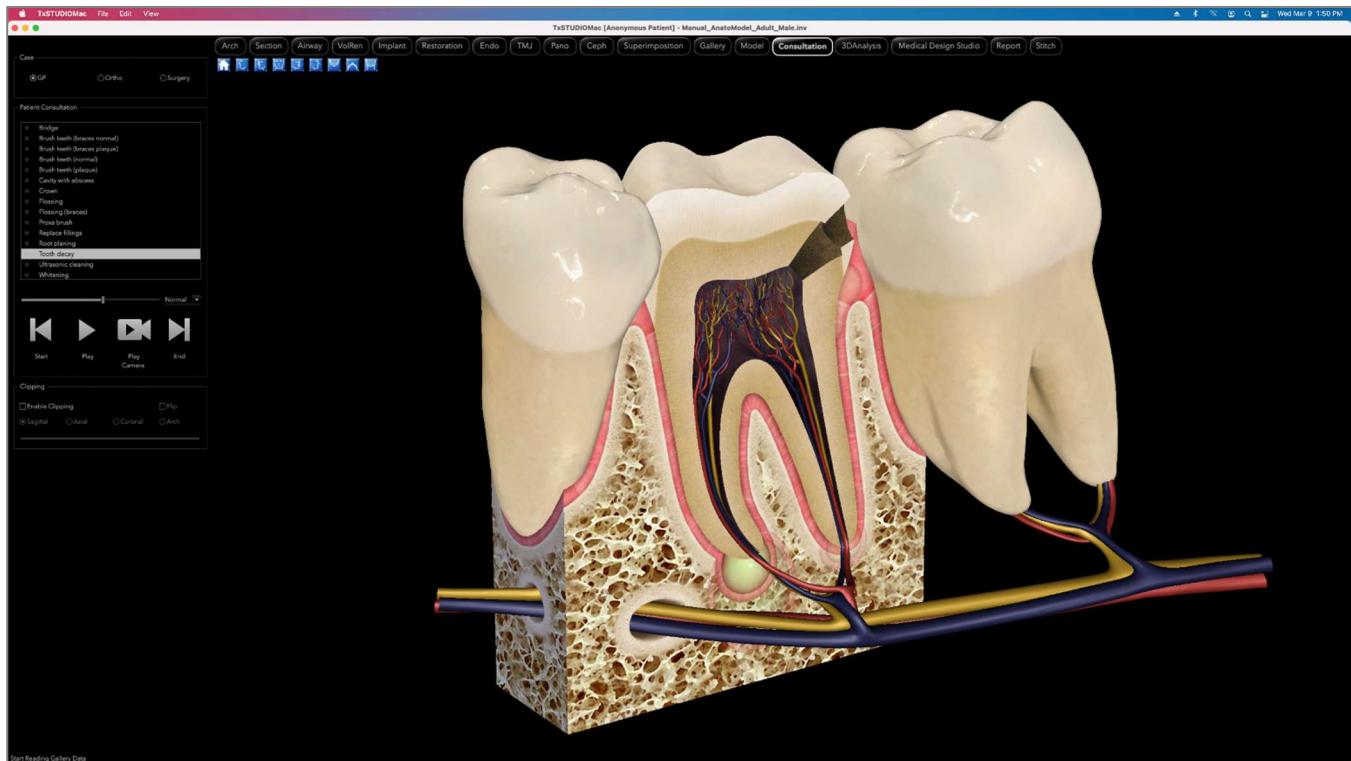
Adding and Deleting Simulations

- Click **Edit** to open a list of all simulations.
- In the Name field, input the name of the new simulation and click **Add**. The new simulation will appear on the list.
- To delete a simulation, click on the simulation on the list to select it, then click **Delete Selected**.
- **Initial Selected** sets the current view state as Frame 0 for the selected simulation.
- If “Edit 0 Frame” is checked, then the initial frame of the simulation will be editable.

Creating Simulations

- Move the slider to Frame 100. This will be the end state of the model.
- Select a model and the move widget should appear.
- The move widget can be repositioned along the model by using **⌘ + click and drag**.
- Use the move widget to adjust the final position of the model.
- Moving the slider (Frame 0 to 100) will move the model between the initial and final positions.
- To adjust intermediate model positions, move the slider to an intermediate frame (between Frame 0 and 100). Use the move widget to adjust the model position.
- Moving the slider (Frame 0 to 100) will move the model from the initial position, through intermediate positions, and to the final position.

Managing Keyframes


- Any animation frame in which a model position was adjusted becomes a keyframe.
- Keyframe management allows for preexisting keyframes to be easily identified, edited, or deleted as well as the creation of new keyframes.
- Click on **Manage Keyframes** to display a list of the keyframes for the selected model.
- The position of the model at existing keyframes can be edited by selecting the appropriate frame and repositioning the model.
- To insert keyframes, move the slider to the desired frame number and then click **Insert**. The model may then be moved to create a new state for that frame.
- To delete keyframes, click on the keyframe on the list and then click **Delete**.

Note: **Manage Keyframes** does not apply to skinwrap.

Please see page 152 for more information on Invivo Models and simulations.

Consultation View Features

The **Consultation View Tab** features preconstructed videos for various dental procedures that are played through *In vivo* for presentation and education purposes. Additional manipulation of model objects can be performed to obtain custom views.

Consultation: Toolbar

Shown below are the Toolbar and tools that are loaded with the Consultation View Tab:

Reset: Resets the rendering window to the original view size.

Left: Automatically orients the volume so the patient is facing left sagittal.

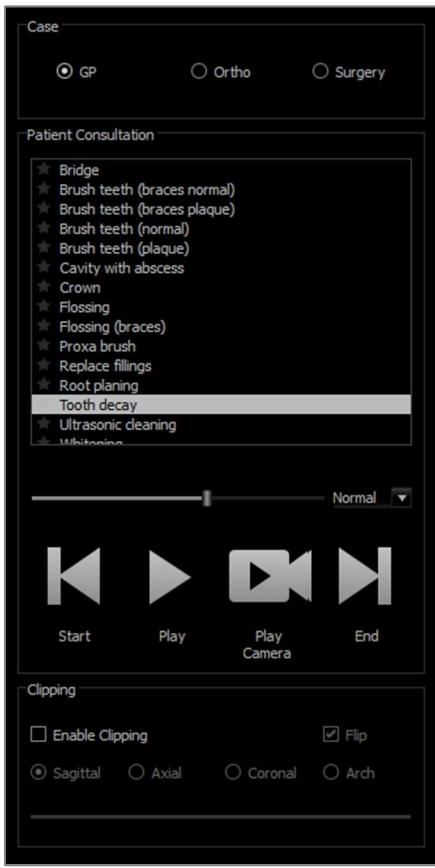
3/4 Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

3/4 Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.



Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Consultation: Control Panel

Case:

- Select a video set by dental specialty.

Patient Consultation:

- Displays list of videos available under the selected specialty.
- Select the desired video to view.
- Click on the star icon to favorite the video.

Video Tools:

- Progress bar: Indicates the current frame of the animation. This bar moves automatically when the video is played but can also be clicked and dragged to a specific frame for viewing
- Speed options: Set animation speed from 0.5x to 2.0x.
- Start: Jumps to the starting frame of the animation.
- Play: Plays the selected video
- Play Camera: Plays the selected video in the current camera perspective. The rendering window can be manipulated to play the animation from different angles and zoom levels.
- End: Jumps to the final frame of the animation.

Clipping:

- Select “Enable Clipping” to slice the image along the predefined anatomical planes (sagittal, axial, coronal). Control the clipping with the scroll mouse or the slider.
- To switch a view to the opposite side, select “Flip.”

Common How to Tasks

How to Trace a Nerve

- Go to the ArchSection Tab.
- Make sure the pano is in Slice Mode (not X-ray mode).
- Adjust focal trough such that the nerve pathway is visible in pano image.
- Move pointer to the pano image.
- Review the nerve pathway while using scroll wheel.
- If the nerve pathway is not clearly visible, adjust the focal trough.
- When the nerve pathway is identified through the pano image, press **New Nerve** in the Control Panel.
- Starting from the mandibular foramen, click point by point.
- If the nerve is not clearly visible, use the mouse scroll wheel to find the nerve and continue picking.
- Near the mental foramen, move the mouse to cross-section view.
- Use the scroll wheel to find the exit of the nerve.
- Pick points connecting the nerve exit.
- Press **Done** in the Control Panel to finish the nerve.

Warning: Any nerve that is traced in a way that does not conform to the actual pathway of the nerve can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based off of the incorrect tracing. It is critical for the end user to learn how to properly perform nerve tracings correctly. If you notice any inconsistencies or software problems with nerve tracing or have further questions or concerns about nerve tracing, please contact Osteoid support at (408) 333-3484 or email us at dental@osteoidinc.com

How to Create Reports In Life Size

- Go to ArchSection Tab.
- Select **Reorientation** button in the toolbar
- Adjust upper and lower limit by dragging green lines and then click **Reorientation** button to exit.
- Adjust focal trough (arch spline) or re-draw arch spline by the clicking the **Create Arch Spline** button.
- Change Layout Mode to “Print Out.”
- Change to a desired layout using the **Change Layout** button.
- Adjust cross-sectional width and interval.
- Move cursor to set cross section in desired location.
- In Print Out mode, user cannot zoom the image since it is set to life size.
- If desired structure is not visible in cross section, adjust axial cursor or focal trough.
- Switch pano image to X-ray mode and turn on the ruler.
- Turn on the **Arch Spline Ruler** and turn off arch spline control points.
- Turn off the cursor if necessary by clicking **Toggle Cursor Visibility**.
- Go to the View menu and choose “Capture to Gallery” or press **⌘ + G**
- Go to Gallery Tab.
- See Print Preview in the File menu and print out a test page.
- To change the format, go to “Print Layout Setup” in the File Menu.
- To use a personal logo, replace the “printLogo.bmp” file in
“/Applications/Anatomage/TxSTUDIOMac.app/Contents/MacOS”
- After the Print Layout Setup is changed, choose Print Out mode before recapturing the image. Otherwise the image could still be in the previous Print Layout Setup.

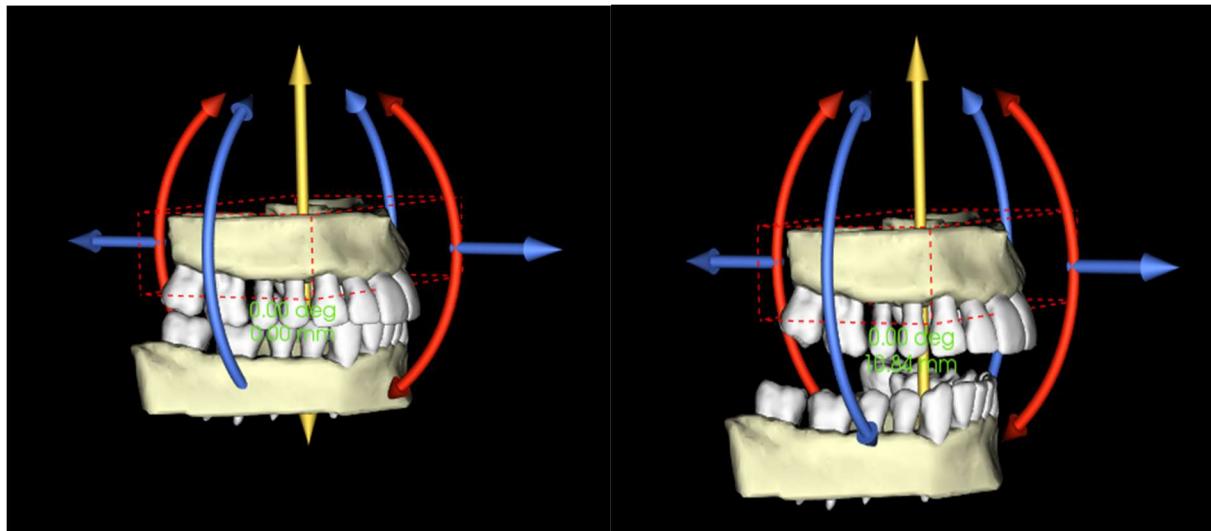
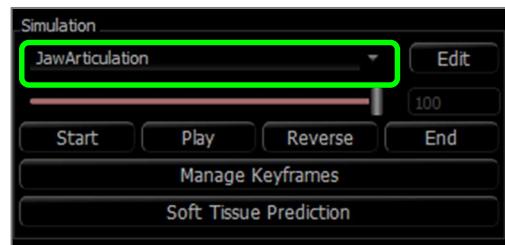
Other View Tabs with Life-Size Printing

- Non-whole view, full-screen Section render (double-click a renderer to make full screen)
- TMJ in Print Out mode (Axial slice will not be life-size)
- Pano in Super Pano
- Super Ceph in Print Out mode

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. Software reports the value based on user-picked points. Due to the nature of medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

How to Create a Positive Airway View

- Go to Volume Render Tab.
- Select the **Inverse** View Control.
- Reduce the opacity such that the internal structures start to appear.
- Change the viewpoint to Top View (Press **Top** button in toolbar).
- Use **Freehand Sculpture** or **Polygon Sculpture** to remove the undesired parts of the volume.
- Change the viewpoint and repeat sculpting operations.
- After the desired airway is isolated, increase the opacity.
- Adjust Brightness and Contrast to set the right visualization.
- (The **Airway Measurement** tool in the Airway Tab also shows a positive airway view that is color coded based on area. This inverse method shows the airway without color coding.)



How to Create an Invivo Model Simulation and Video

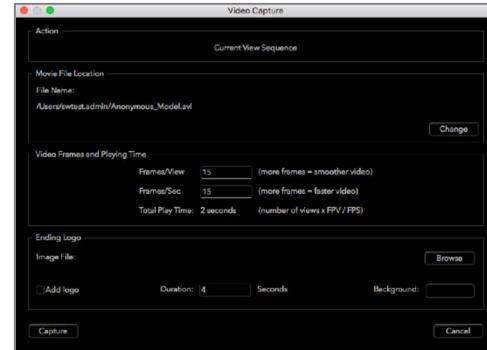
Simulations require the use of the Invivo Model service provided on a case-by-case basis from Osteoid. The Invivo Model service may include some or all of the following features:

- Individually segmented, digital models of patient dentition
- Segmented digital models of patient mandible and maxilla
- 3D photograph overlay on the patient soft-tissue profile

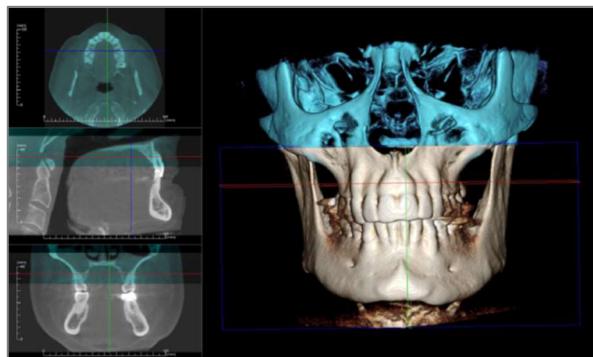
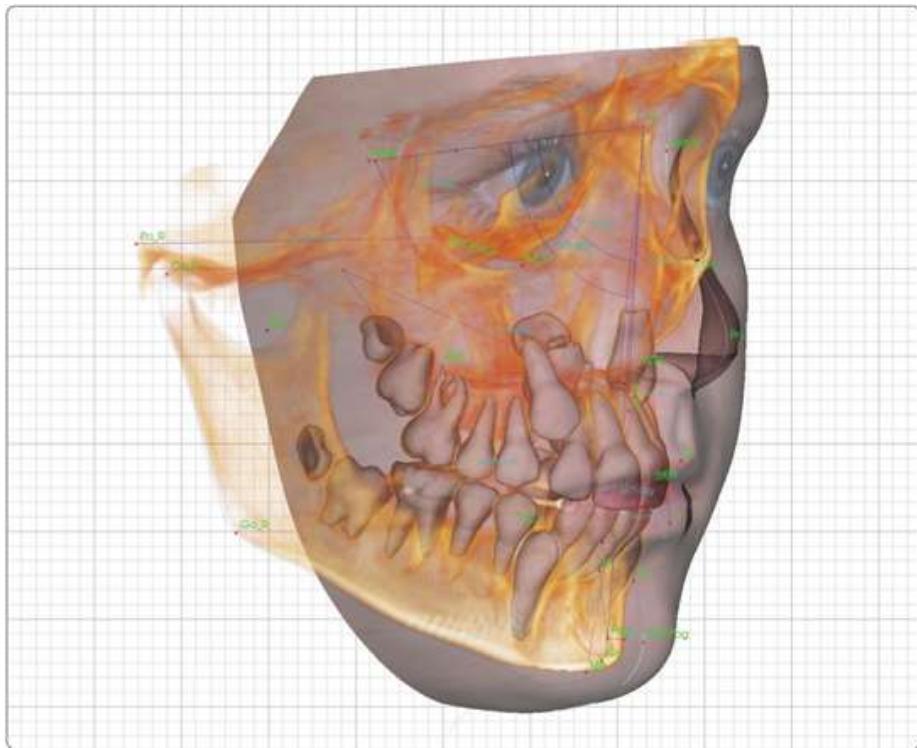
For additional information about the Invivo Model service, please contact Osteoid at (408) 333-3484 or email us at dental@osteoidinc.com.

- Go to Model Tab.
- Control Panel: Simulation, from the drop-down menu choose an existing simulation (TeethMovement, JawArticulation) or create a new one (select **Edit**).
- Move the slider to the very end (Frame 100).

- Select a model adjust and the move widget should appear.
- Use the move widget to adjust the final position of the model.
- Moving the slider (Frame 0 to 100) will move the model between the initial and final positions.
- To adjust intermediate model positions, move the slider to an intermediate frame (between Frame 0 and 100). Use the move widget to adjust the model position.
- Moving the slider (Frame 0 to 100) will move the model from the initial position, through intermediate positions, and to the final position.
- The position of the models set on the frames can be edited through the **Manage Keyframes** option.

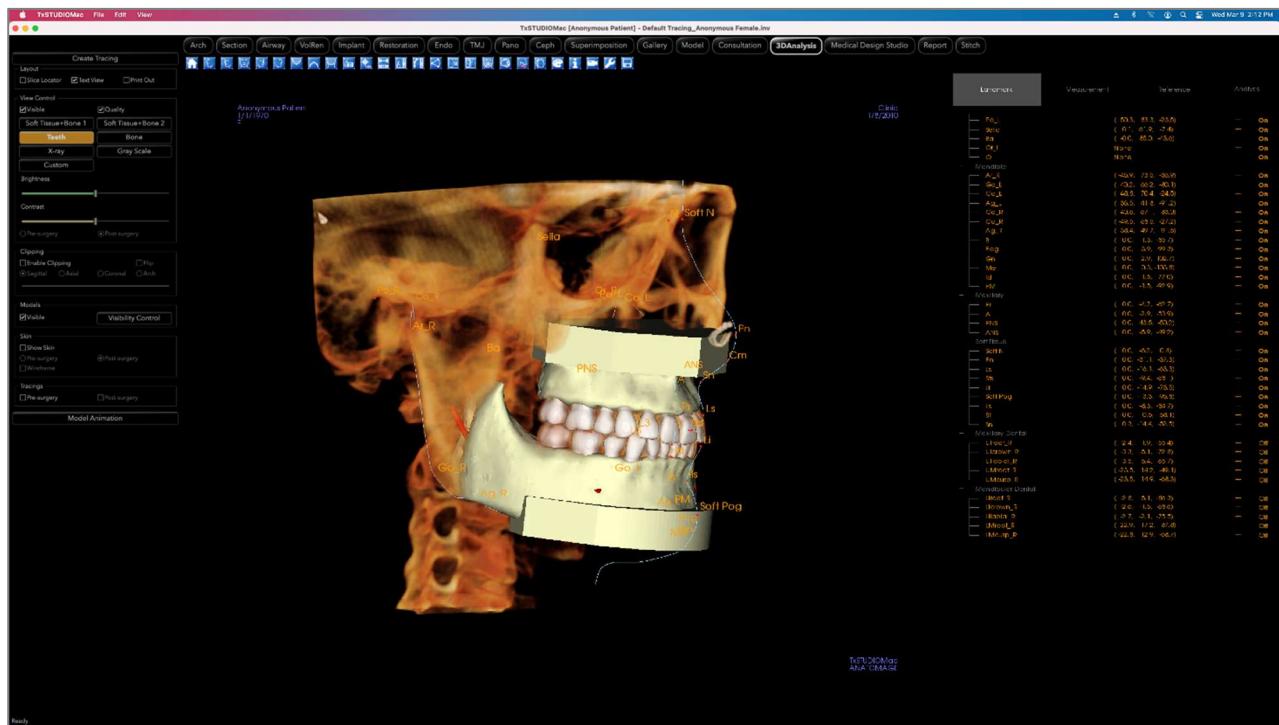

View Sequence:

- To create a video of the simulation, select the **View Sequence** button from the **Model Toolbar** to open the View Sequencer Window.
- Much like the **Volume Render View Tab** (pg. 64), frames with various volume orientations, clippings, colorizations, etc. can be inserted.
- Adjust rendering window image to desired settings (orientation, volume colorization, etc.) and move the Simulation slider to Frame 0.
- Press **Insert** in View Sequencer window.
- Adjust rendering window image to desired settings (orientation, volume colorization, etc.) and move the simulation slider to Frame 100.
- Press **Insert** in View Sequencer window.
- Test the video using the **Start**, **Play**, and **End** buttons in the View Sequencer window.

Movie Capture:

- If needed, make any necessary changes (**Insert** new views or **Modify/Delete** existing views) until the simulation is as desired.
- Once the view sequence is finalized, select **VIDEO Capture** to open the Movie Capture Window.
- Please refer to **Volume Render Tab: View Sequence Section** (pg. 64) for additional descriptions.
- **Capture** the view sequence to save the simulation as an AVI movie file.


Invivo6 Additional Modules

The following modules are sold separately. To find out more information about these modules, please contact Osteoid at (408) 333-3484 or at dental@osteoidinc.com

3DAnalysis Module Features

The **3DAnalysis View Tab** shows the patient in three-dimensional, reconstructed views and allows for exploring the internal structures and never-before-seen anatomy of the patient. With **3DAnalysis**, the user can construct various landmarks and profiles, calculate 3D and 2D measurements, and report analytical results.

Warning: 3DAnalysis module is not a medical device and should be used as a reference or presentation tool only.

3DAnalysis: Toolbar

Shown below are the Toolbar and tools that are loaded with the 3DAnalysis View Tab:

Reset: Resets the rendering window to the original view size.

Left: Automatically orients the volume so the patient is facing left sagittal.

3/4 Left: Automatically orients the volume so the patient is facing 45° left sagittal.

Front: Automatically orients the volume so the patient is facing the front.

3/4 Right: Automatically orients the volume so the patient is facing 45° right sagittal.

Right: Automatically orients the volume so the patient is facing right sagittal.

Top: Automatically orients the volume in a top-down view.

Bottom: Automatically orients the volume in a bottom-up view.

Back: Automatically orients the volume to the posterior view.

Slice Explorer: Once activated, clicking on a point on the volume will open a 2D zoom window in that location. The zoom window can be scrolled through using the mouse wheel.

Marker: Select this option to mark a point on the volume and X, Y, Z coordinates (axial, sagittal, vertical) will appear. Clicking on the point and moving the cursor can modify points. Click on the point and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be hidden or exported to a report.

Distance Measurement: Select this option and mark two points on the volume and distance will appear. Clicking on the point and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Angle Measurement: Select this option and mark three points on the volume and the angle between them will appear. Clicking on their control points and moving the cursor can modify measurements. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Polyline Measurement: Select this option and mark any number of points on the volume. Right-click to end the measurement, and the total distance will appear. Clicking on the nodes and moving the cursor can modify points. Click on the measurement and press the “fn” + “delete” keys to delete it. Control Panel features allow the values to be projected to 2D, hidden, or exported to a report.

Arc Widget: Places an arc visual on the volume displaying the arc angle and radius of the circle containing the arc. Requires the placement of three points, the first marking the center of a circle and the last two marking the endpoints of the arc.

Reorientation: Click to change patient orientation.

Tracing Tasks: Perform and edit the tracing tasks defined through series of picking landmarks and/or drawing profiles. (Refer to **3DAnalysis: Tracing Tasks** for more information, pg. 164.)

Create Face Photo: Opens the Create Face Photo Wrapping dialog. The dialog provides guided steps to producing a 3D photo wrap of the scan volume using textures from a photograph.

Superimpose Tracing: Opens the Tracing Superimposition dialog. The user can select a case and configure landmarks within this window to perform a landmark-based superimposition. This dialog also contains the Superimposed Tracing Visibility Controls.

3D Surgery: Opens 3D Surgery dialog. Surgical cuts, bone movement, and rotations can be simulated. The post-surgery volume can be further analyzed based on the analysis and the soft-tissue prediction.

Profilogram: Opens Profilogram dialog, converting the the pre- and post-surgery tracings (if available) to profilograms. Certain visibility options are available, and the registration settings can be changed.

Visual Preference: Change color preference and define displaying type (For more information refer to **3DAnalysis Settings**, pg. 185.)

Information Display: Displays or hides case information embedded in the scan data.

View Sequence: Allows for the creation of custom camera sequences and AVI file movie capturing. Refer to the View Sequence description in the Volume Render View section (pg. 64).

Settings: Allows option to view either parallel or perspective views in 3D.

Save Information: Opens a dialog containing commands for managing the 3DAnalysis configuration files, saving/exporting tracing data, and for building measurement norm data.

Warning: Any measurement that is incorrect can lead to surgical complications if diagnosis, treatment plans and/or actual treatment is based on the incorrect measurements. It is critical for the end user to learn how to perform measurements correctly and employ proper usage of all measurement tools. Measurement accuracy depends on the image data and the hardware scanner that generated the image data. The measurement cannot be more precise than the resolution of the image. The software reports the value based on user-picked points. Due to the nature of the medical imaging, the boundary is not always well defined. The apparent boundary depends on the current brightness and contrast setting. The boundary may shift as the user makes adjustments to brightness and contrast. The user must understand the limitation of the measurement value before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about using measurement tools correctly, please contact us at (408) 333-3484 or email us at support@osteoidinc.com

3DAnalysis: Control Panel

Create Tracing: Perform and edit the tracing tasks that are defined with some series of picking landmarks and/or drawing profiles. (Same as **Tracing Tasks** button on toolbar. For more details refer to **3DAnalysis: Tracing Tasks**, pg. 164.)

Layout: Configure layout options for the rendering window.

- **Slice Locator:** Aid for picking landmark location.
- **Text View:** Provides visibility options and values for landmarks, measurements, reference planes, and analysis configurations.
- **Print Out:** Changes rendering window to a life-size printer-friendly version of the volume and tracing. Not compatible with slice locator view.

View Control:

- **Visible:** Allows the 3D volume rendering to be turned on or off from view.
- **Quality:** Box can be clicked on or off to further enhance the quality of the image.
- **View Presets:** Different settings allow for better visualization of certain anatomic structures, soft tissue profiles, hard tissue, etc. This is achieved by displaying specific densities with specific colors and transparencies.
- **Brightness & Contrast:** Can be adjusted for each of the presets to enhance the image.

Clipping: Click the “Enable Clipping” box to slice the image along the predefined anatomical planes (sagittal, axial, coronal, and arch). Scrolling the mouse wheel or moving the slider will move the clipping plane. To switch a view to the opposite side, click “Flip.” Fine clipping is activated by scrolling with the mouse scroll wheel while the “⌘” key is pressed.

Models:

- **Visible:** Allows the 3D models to be turned on or off from view.
- **Visibility Control:** Select individual 3D Models to be turned on or off from view.

Skin:

- **Show Skin:** Turns either pre- or post-surgery skin on or off.
- **Wireframe:** Converts the skin to a wire-mesh form.

Tracings:

- Toggles the visibility of the pre-and post-surgery tracings.

Model Animation:

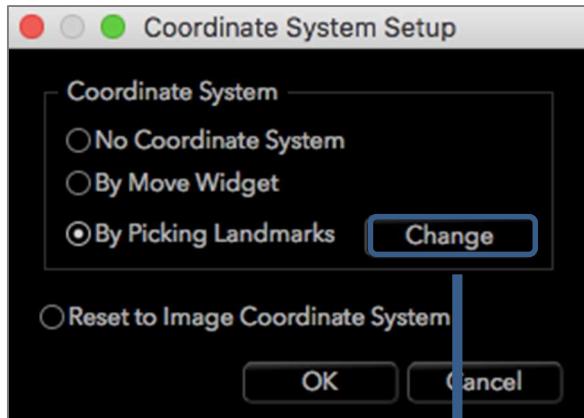
- Create, edit, or play model simulations within the rendering window.

3DAnalysis: Coordinate System

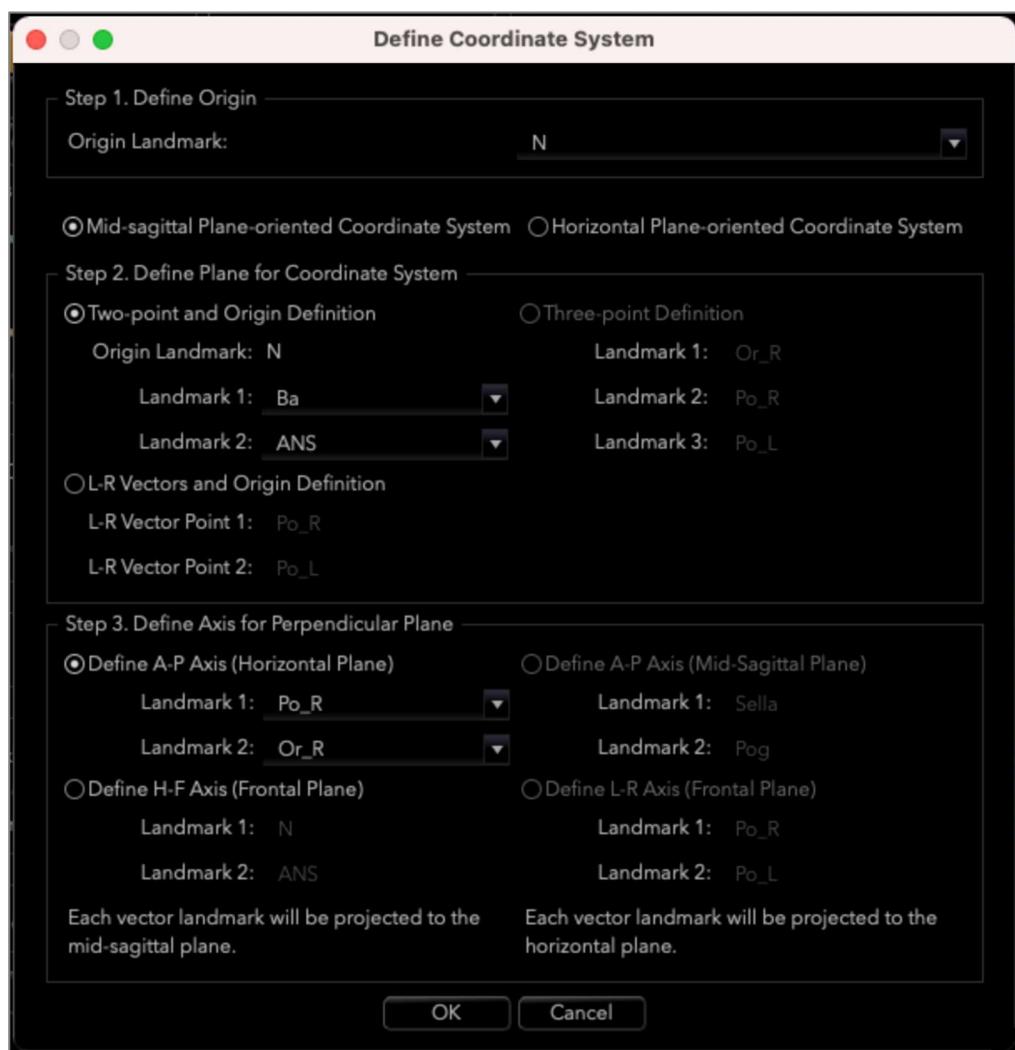
Context:

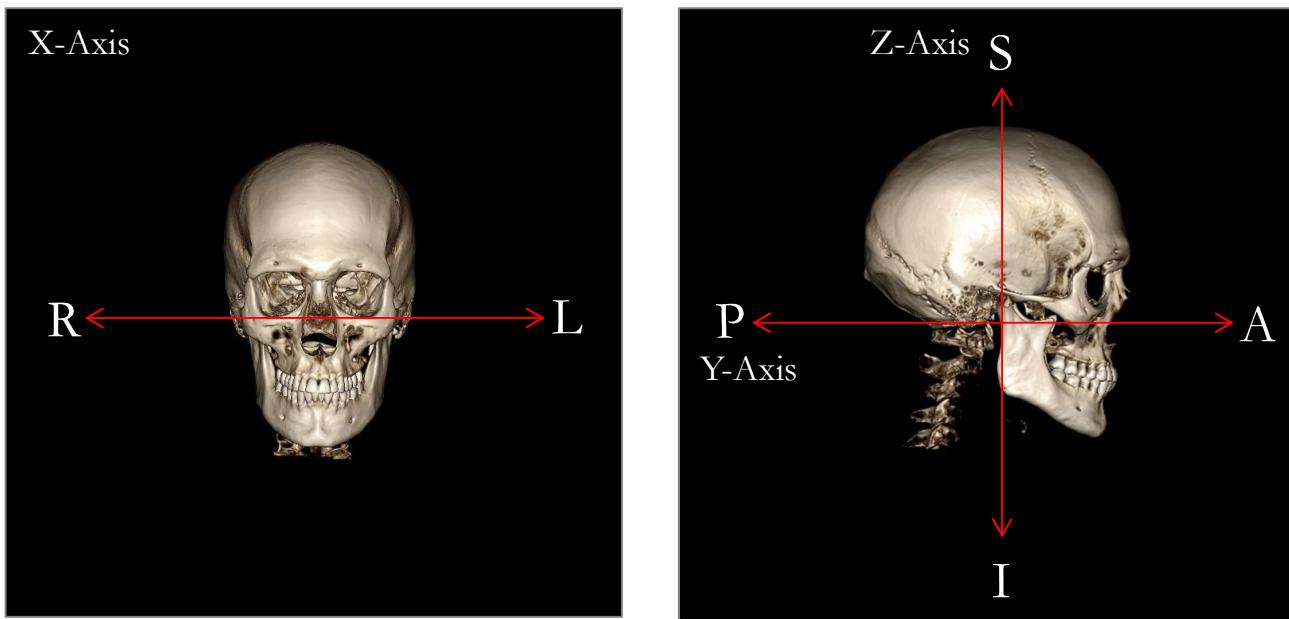
The coordinate system is very important for any three-dimensional (3D) system. It defines the structure for subsequent measurements and analyses. Even though the absolute measurements such as linear distance or angular measurement are invariant to the coordinate system, any projected measurement, such as the angle projected to mid-sagittal plane is significantly influenced by the coordinate system. Thus, it is essential to establish a sound coordinate system before any measurements or analysis can be done.

There is a coordinate system for 2D images, too. However, given its simplicity, one may not realize it as a coordinate system but more or less direction. In general, for a two-dimensional system, one simply needs to determine a single axis and the other is often determined as orthogonal to the first. In traditional 2D cephalometrics, the Frankfort horizontal plane could serve as the horizontal axis. By default, the vertical axis is defined from this Frankfort plane.


In a 3D coordinate system, however, it is more complicated. One has to define three axes, and (for a typical Cartesian coordinate system) they must be orthogonal to one another. Additionally, the origin of the coordinate system could be anywhere but preferably lying on an anatomical feature. The challenge is that anatomical landmarks and coordinate axes are not necessarily aligned; a line connecting two landmarks may not serve as the correct coordinate axis.

From a mathematical perspective, any coordinate system based on finite number of 3D coordinates is relatively simple linear algebra. Thus, any desired coordinate system can be established by a linear combination of the landmark coordinate values. Such definitions may be difficult to understand for clinicians and may not have anatomical meaning or agree with existing analysis schemata.


In this software, we propose a coordinate system construction scheme with the following essential goals:


1. Support for existing clinical concepts
2. Freedom to establish user-defined coordinate system(s)
3. Interface that is easy to set up and understand

Coordinate System: Click to change coordinate system.

- No Coordinate System for Tracing: Do nothing to define the coordinate system. Use current coordinate settings.
- by Move Widget: Use Move Widget to define the coordinate system before performing tracing tasks.
- by Picking Landmarks: Define the coordinate system by picking landmarks predefined on the Define Coordinate System dialog (below).
- Reset to Image Coordinate System: Cancel the current coordinate system definition and return to the original patient coordinate system.

Defining the Coordinate System by Picking Landmarks:

Two methods of defining the coordinate system by landmarks are available in 3DAnalysis. Switch between the methods in the Define Coordinate System window by pressing the **Coordinate System** button in the toolbar, selecting “By Picking Landmarks” and pressing **Change**. Alternatively, the Define Coordinate System window can be accessed in a similar manner but through the Tracing Guide window. The images above show the orientation of axes and anatomical terms of location.

Step 1: Define Origin

Irrespective of which method is chosen when defining the coordinate system, a landmark must be selected to serve as the origin for measurements, references, and the analysis.

Next, choose the method of determining the coordinate system:

- Mid-sagittal plane-oriented coordinate system
- Horizontal plane-oriented coordinate system

Step 2: Define Plane for Coordinate System (Mid-Sagittal Plane Method)

The mid-sagittal plane can be established by two methods:

1. *Use 3 Points Defining:* Define two additional points. With the origin defined (Step 1), a total of three points defines the mid-sagittal plane.
Ex: Origin – nasion, two points – anterior nasal spine and basion.
2. *Use L-R Vectors and a Point of Origin:* Choose two points on either side of the volume (left and right sides) to create a vector. The mid-sagittal plane will be set normal to the vector and intersecting the origin.
Ex: Origin – nasion, two points – left and right porion.

The origin must be located on the mid-sagittal plane. Step 3 will determine the perpendicular axes.

Step 3: Define Axis for the Perpendicular Plane (Mid-Sagittal Plane Method)

From the mid-sagittal plane, the X-axis is defined as normal to the plane. The perpendicular Y- and Z-axes (sitting on the plane) can be determined by projecting a vector onto the mid-sagittal plane to define one and setting the other as normal to this plane. There are two manners of determining the Y- and Z-axes using this method:

1. *Define A-P Axis (Horizontal Plane):* choose two landmarks to connect anterior to posterior and serve as the horizontal plane.
Ex: Point 1 – right orbital, Point 2 – right porion → Frankfort horizontal plane
2. *Define F-H Axis (Frontal Plane):* choose two landmarks to connect head to foot and serve as the vertical plane.
Ex: Point 1 – nasion, Point 2 – anterior nasal spine → frontal plane

* * *

Step 2: Define Plane for Coordinate System (Horizontal Plane Method)

The horizontal plane can be established using three landmarks.

Ex: Point 1 – right orbitale, Points 2, 3 – left and right porions
Defines the 3D Frankfort horizontal plane

The origin must be located on the horizontal plane. Step 3 will determine the perpendicular axes.

Step 3: Define Axis for the Perpendicular Plane (Horizontal Plane Method)

From the horizontal plane, the Z-axis is defined as normal to the plane. The perpendicular X- and Y- axes (sitting on the plane) can be determined by projecting a vector onto the horizontal plane to define one and setting the other as normal to this plane. There are two manners of determining the X- and Y-axes using this method:

1. *Define A-P Axis (Mid-Sagittal Plane):* choose two landmarks to connect anterior to posterior and serve as the mid-sagittal plane.
Ex: Point 1 – basion, Point 2 – nasion
2. *Define L-R Axis (Frontal Plane):* choose two landmarks to connect laterally and serve as the frontal plane.
Ex: Point 1 – left porion, Point 2 – right porion

When Steps 1-3 are completed, press the **OK** button to save the settings and close the Define Coordinate System window.

Note:

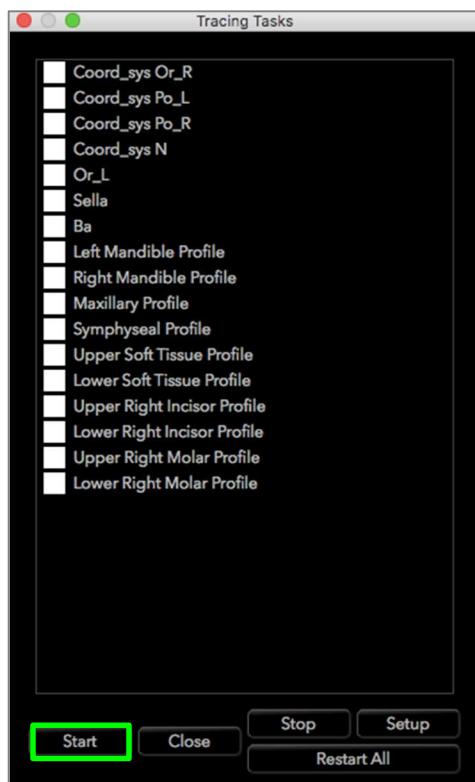
In traditional 2D cephalometry, the sagittal direction is constructed between porions. In 3D cephalometry, there is a dilemma in that the sagittal axis (porion to porion) and the mid-sagittal plane (nasion, anterior nasal spine, sella) cannot be achieved simultaneously.

If porion-to-porion is chosen to be the sagittal axis, the orientation of the mid-sagittal plane is defined by the axis and one landmark could define it completely. Consequently, the other landmarks may sit close but not exactly on the mid-sagittal plane.

Alternatively, if the mid-sagittal plane is constructed using three landmarks (nasion, anterior nasal spine, sella) then the sagittal axis is defined from the mid-sagittal plane. This axis may not be parallel to the vector connecting the two porion points.

Using 3D cephalometrics allows for more accurate measurements and analysis. However, there are discrepancies with traditional 2D analysis (such as the one listed above, so caution should be used in defining the coordinate system, landmarks, references, etc. to minimize these differences.

3DAnalysis: Tracing Tasks


Now that the patient coordinate system is established, start picking points. The first set of points are the coordinate-system associated landmarks, followed by other landmarks and profiles.

Note: If placing points on the volume due to the predefined rendering, angle, and clipping settings is challenging, please refer to the **3DAnalysis: Tracing Guide** section (pg. 196) to edit the view states.

Tracing Tasks:

To begin tracing the rendered volume, press either **Create Tracing** in the Control Panel or the **Tracing Tasks** button in the toolbar.

The Tracing Tasks window should open and list the order of Tracing Tasks to be performed. By default, the window opens in editing mode. (**See Tracing Tasks – Editing Mode**). Once a tracing task has been started, pick points on the rendered volume to define landmarks and profiles.

Start: Starts the first listed undefined tracing task. The tracing tasks required for defining the coordinate system are done first and prefixed with “Coord_sys.” After defining the coordinate system Tracing Tasks, double click to start specified tracing tasks or selecting them and pressing the **Start** button. The currently selected tracing task is marked with a cross-hair symbol and completed tracing tasks are marked with a checkmark .

- **Close:** Stops current tracing task and closes the Tracing Task window.
- **Stop:** Stops current tracing task and returns to the editing mode in the tracing task window.
- **Setup:** Opens the Tracing Guide window.
- **Restart All:** Discards completed tracing tasks and restarts from the first tracing task.

Tracing Tasks – Editing Mode:

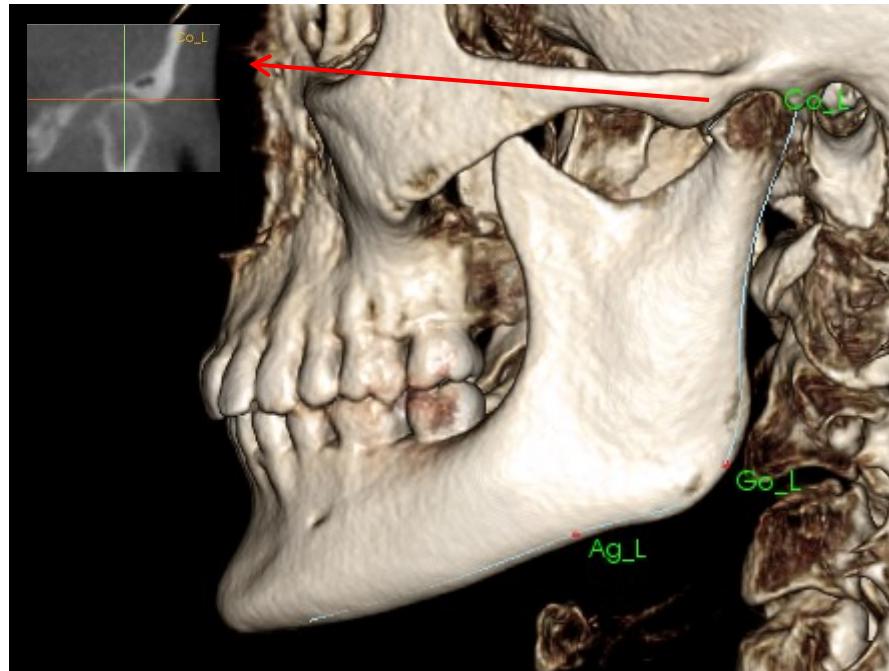
To enter Editing Mode simply open the Tracing Tasks window by clicking on **Create Tracing**. When in editing mode, one can modify completed landmark positions and profile lines. Landmark positions and profile points are highlighted on the volume in the rendering window. Move the mouse over the landmark or profile point. Left-click and drag the landmark or profile point to the new desired location. Releasing the left-button will save the new position of the landmark or profile point on the volume. Selecting a landmark or profile point will also highlight the point on the Slice Locator, where the point can be further adjusted. This technique will help to move and adjust profile lines quickly without re-tracing the entire feature.

Tracing Task Examples and Tips

Notes About Landmarks/Profiles:

- Many common landmarks are associated with profile tracings. These landmarks will therefore only show on the volume and have a coordinate value when the corresponding profile tracing is completed (ex. Condyle point Co_R with the Right Mandibular Profile). Contact Osteoid Support and see the section **Default Tracing Tasks and Landmarks** (pg. 198) for more information about these automatic definitions.
- Users can pick points for landmarks or profiles on models. These models can be in the form of Skin or Tooth Invivo Models as well as models created and/or imported into the Model Tab from MD Studio. (MD Studio is an add-on module for Invivo6.)

The following pages will demonstrate profiles and associated landmarks that are integrated into the default configuration file from the initial installation.

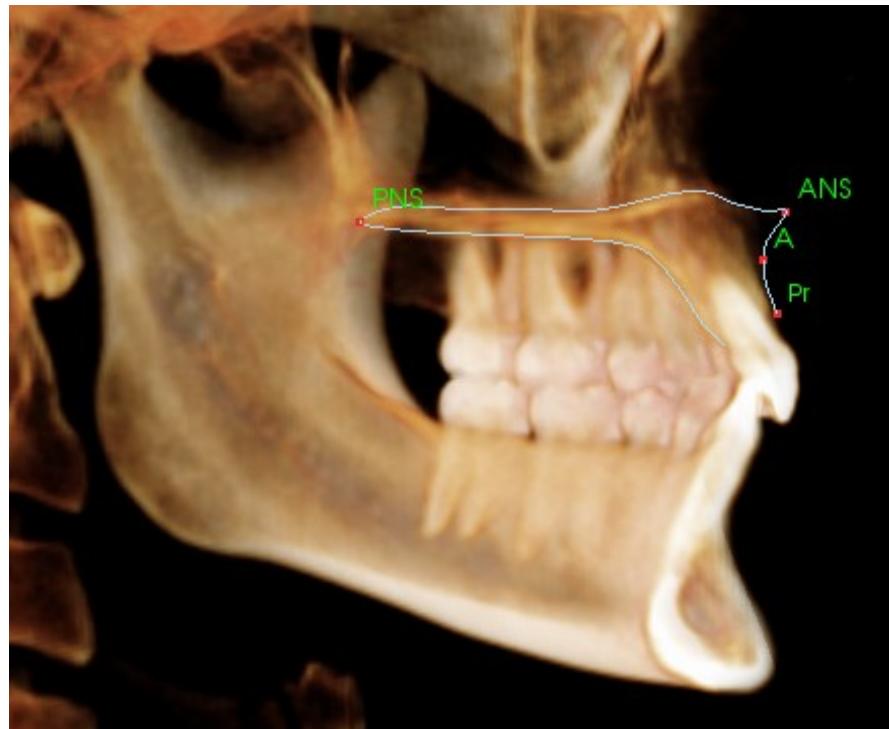

Warning: Results produced by the software's diagnostic and planning tools are dependent on correct selection of landmarks by the user in the 3D volume. The software reports values based on these user-picked points. Due to the nature of medical imaging, the boundaries are not always well defined. The apparent boundaries depend on the current brightness and contrast settings. The boundaries may shift as the user makes adjustments to brightness and contrast. The user must understand the limitations of the measurement values before applying to the patient. If you notice any inconsistencies or software problems with measurements, or have further questions or concerns about correctly using measurement tools correctly, please contact us at (408) 333-3484 or email us at dental@osteoidinc.com

Mandibular Profile

Be sure to include the profiles of the condyle, mandibular notch, and corpus. Follow the curve to include the gonion and antegonion. The antegonion, condyle, and gonion locations will be determined in the software through the profile. Always verify the location of the antegonion; open the tracing task to activate Edit mode and drag to modify.

Structure contains:

Co – Condyle
Go – Gonion
Ag – Antegonion

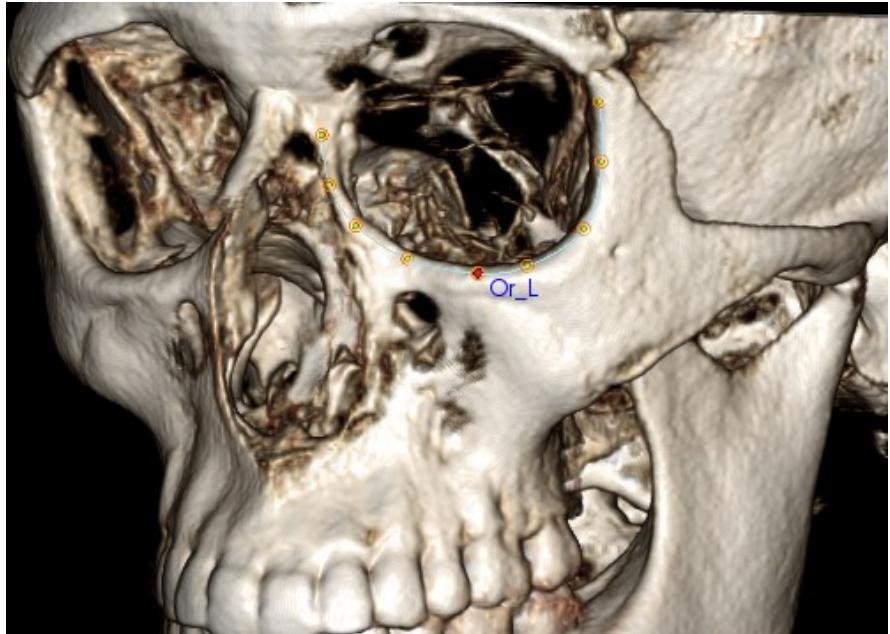


Maxillary Profile

Start the profile near the anterior interface of the upper incisor and follow the profile of the maxilla back to the posterior interface of the incisor. Adjust the brightness and/or contrast levels to show the anterior nasal spine (ANS) and include that in the tracing profile. It is recommended that a profile point is placed at or very near the ANS. Note: Using the default user-picked ANS replaces the automatically-defined profile ANS. The Pr point is placed at the location of the first click.

Structure contains:

ANS – Anterior Nasal Spine
PNS – Posterior Nasal Spine
A – A point
Pr – Prosthion



Orbital Profile

Trace the most anterior part of the ridge usually noticeable based on the brightness (whiteness) of the bone around the orbit. Follow this ridge from the zygomatic suture to about the medio-orbital. If the orbitale is included as a landmark (ex: for Frankfort horizontal), it is recommended to include this point as a profile point in the tracing. A user-defined Or_L or Or_R landmark overrides the automatic Or landmarks.

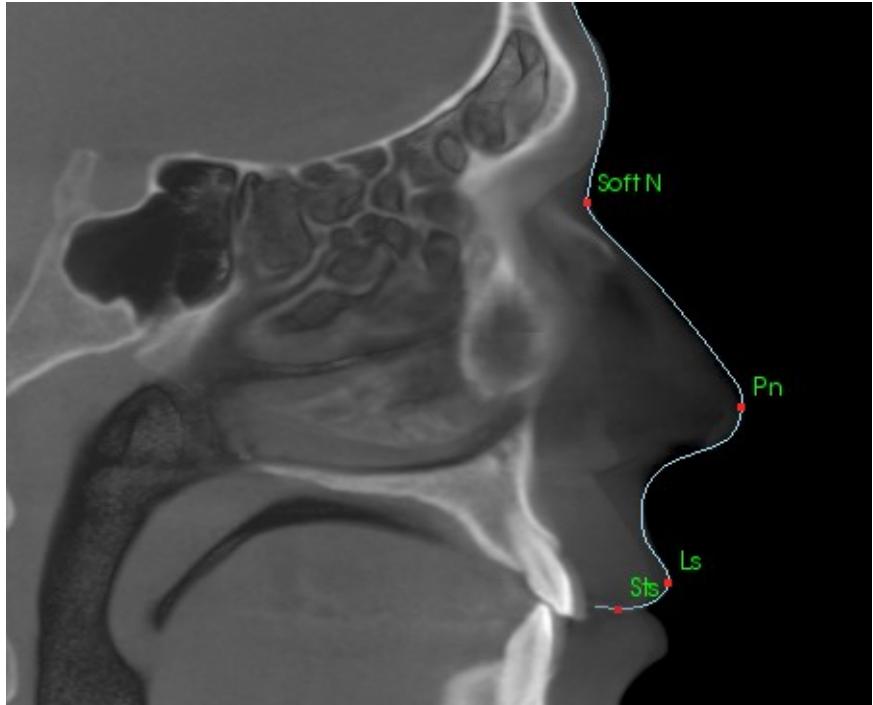
Structure contains:

Or – Orbitale

Soft-tissue Profile

(Upper)

Adjust the brightness and/or contrast of the image to see the soft-tissue profile. Trace it from the top of the head to the lips. The upper soft-tissue should include the profile of the upper lip.


Structure contains:

Soft N – Soft Tissue Nasion

Pn – Pronasale

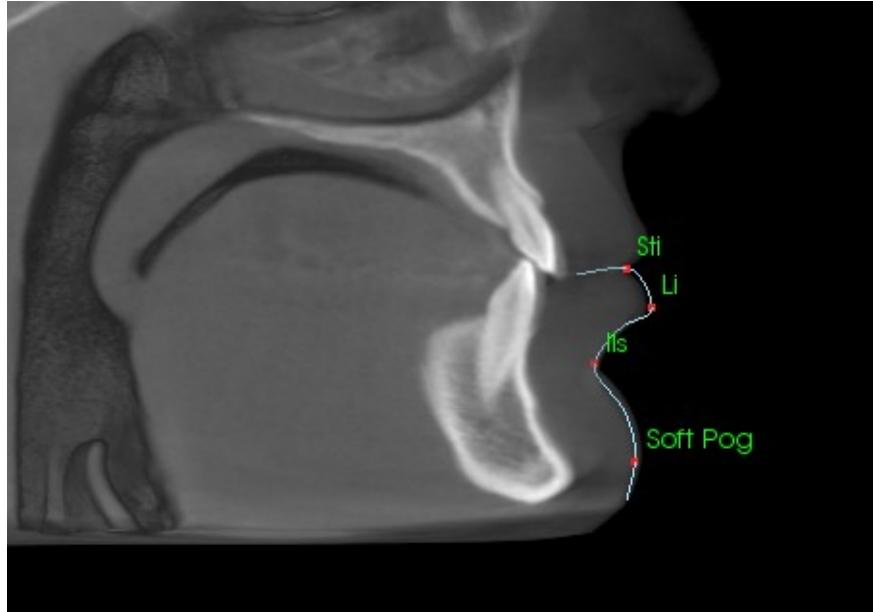
Ls – Labrale Superius

Sts – Stomion Superius

Soft-tissue Profile

(Lower)

Adjust the brightness and/or contrast of the image to see the soft-tissue profile. Trace it from the lips to below the chin. The lower soft-tissue should include the profile of the lower lip.


Structure contains:

Sti – Stomion Inferius

Li – Labrale Inferius

Ils – Soft-tissue B point

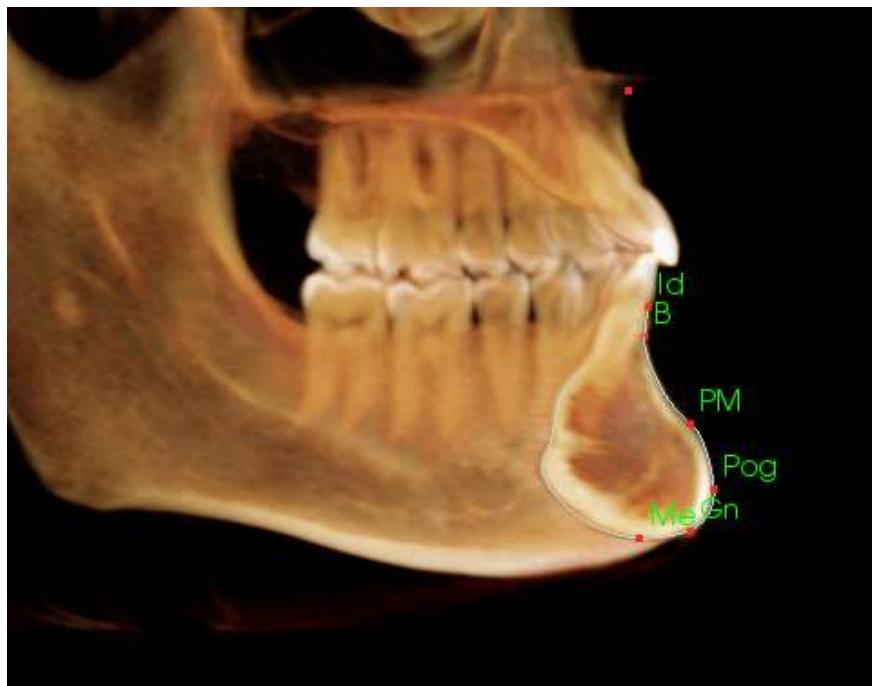
Soft Pog – Soft-tissue Pogonion

Symphyseal (Mandible) Profile

The profile should start near the anterior interface of the lower incisor, follow the curvature of the symphysis and finish at the posterior interface of the lower incisor. The Id point will be placed at the location of the first click.

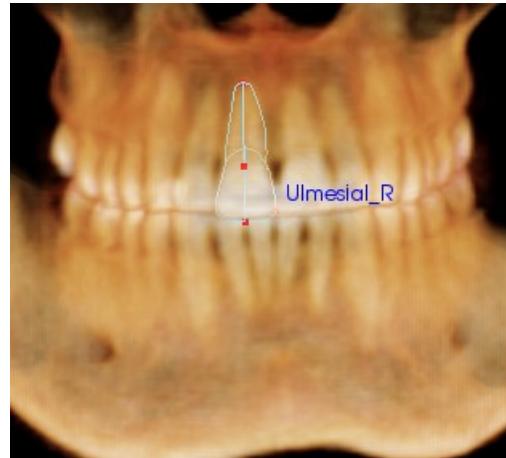
Structure contains:

Id – Infradentale


B – B point

PM – Protuberance Menti

Pog – Pogonion




Gn – Gnathion

Me – Menton

Teeth (Molar)

Place the first point at the tip of the anterior root for the molar. Place the next point at the tip of the anterior cusp. Place the final point at the tip of the posterior cusp. This procedure is applicable to the upper and lower molars (only lower molar shown at right).

Teeth (Incisor)

Place the first point at the tip of the root for the incisor. Place the next point at the tip of the crown. Place the final point on the most labial side of the tooth. This procedure is valid for both the upper and lower incisors (only upper is shown).

Frontal Incisor Profiles require an additional fourth point, located at the most mesial point of each central incisor. When performing the tracing task, trace the first three points using the sagittal view and then use the frontal view to place the fourth point. Use the toolbar orientation buttons to rotate the volume during a tracing task.

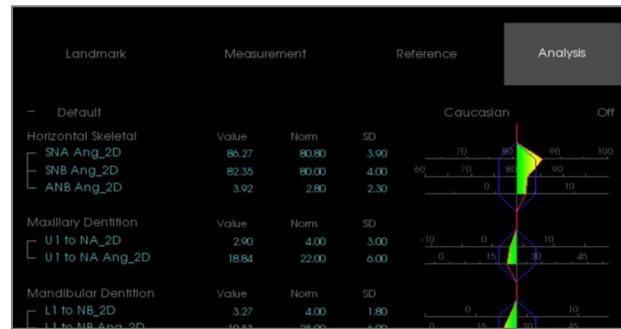
Note: When adding the Frontal Incisor Profiles to the current tracing task list, first ensure that the frontal lateral profiles are no longer on the list before they can be added. The two types of frontal incisors are not intended to be used simultaneously.

3DAnalysis: Text View

Once the landmarks have been defined on the volume, visualize the results of the analysis. Most of the data is in the Text View, available under the Layout section of the Control Panel. Once Text View has been checked, a pane appears on the right side of the screen. If any of the contents extend beyond the bottom of the screen, use the mouse wheel to scroll down the list. Text View includes the following tabs:

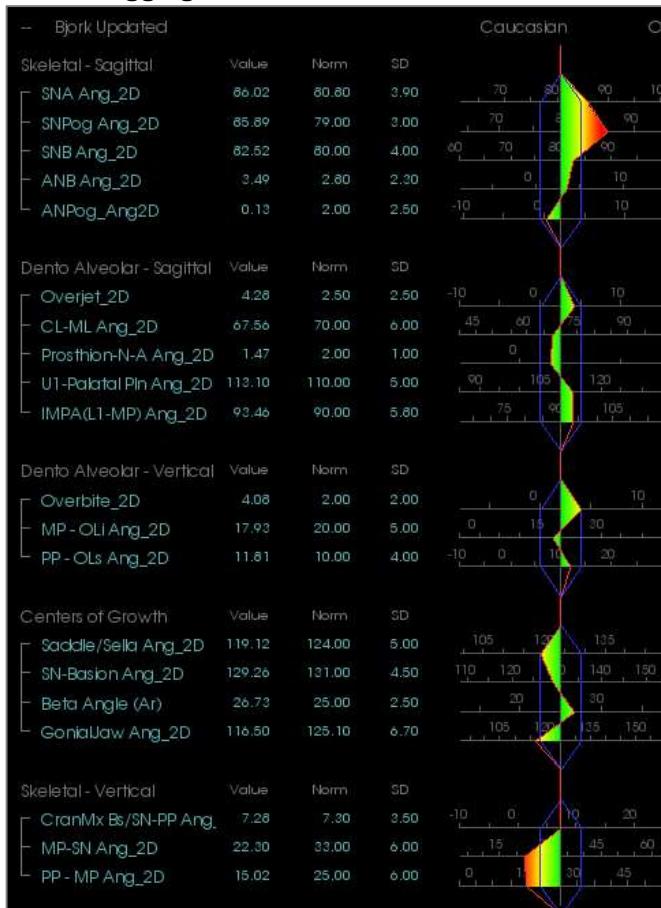
Landmark	Measurement	Reference	Analysis
- Cranial Base			
N	(0.0, 0.0, 0.0)		On
Or_R	(-25.3, 9.8, -25.2)		On
Po_R	(-55.0, 80.5, -25.2)		On
Po_L	(50.3, 83.3, -23.5)		On
Sella	(0.1, 61.9, -7.4)		On
Ba	(-0.0, 85.0, -43.6)		On
Or_L	None		On
O	None		On
- Mandible			
Ar_R	(-45.9, 73.5, -36.9)		On
Go_L	(40.2, 66.2, -80.1)		On
Co_L	(48.8, 70.4, -24.5)		On
Ag_L	(35.5, 41.8, -91.2)		On
Go_R	(-40.6, 67.1, -83.0)		On
Co_R	(-49.5, 68.5, -27.2)		On
Ag_R	(-38.4, 49.7, -91.6)		On
B	(0.0, 1.3, -85.7)		On
Pog	(0.0, -3.9, -99.3)		On
Gn	(0.0, -2.9, -102.7)		On
Me	(0.0, 0.3, -103.8)		On
Id	(-0.0, -1.5, -77.0)		On
PM	(0.0, -1.5, -92.9)		On

Landmark: List of currently traced landmarks and the respective position values. Clicking the landmark line can set the display of the landmark name On/Off on the volume. Clicking the group line can set the display of all landmarks in that group On/Off at the same time.


Landmark	Measurement	Reference	Analysis
- Reference Planes			
Mid-Sagittal plane		Off	
Frontal plane		Off	
Frankfort Horizontal Plane R		Off	
Maxillary Plane		Off	
Mandibular Plane		Off	
Ba-N Plane		Off	
A FH Perp		Off	
Occlusal Plane R		Off	
N - Ond Perp		Off	

Reference: List of currently available references. Clicking the reference line/plane can set the display the name and line/plane of the reference line/plane On/Off on the volume. Clicking the group line can set the display of all references of the group as On/Off at the same time.

Landmark	Measurement	Reference	Analysis
- Horizontal Skeletal			
ANB Ang_2D	degree*	3.92	Off
SNA Ang_2D	degree*	86.27	Off
SNB Ang_2D	degree*	82.35	Off
Pog to NB_2D	mm*	5.39	Off
Go/Gn to SN Ang_2D	degree*	22.48	Off
Y-(growth) Axis Ang_2D	degree*	55.77	Off
- Vertical Skeletal			
OP to SN Ang_2D	degree*	14.08	Off
- A-P Dentition			
OP to SN Ang_2D	mm*	2.90	Off
- Reference Planes			
U1 to NA_2D	degree*	18.84	Off
U1 to L1 Ang_2D	degree*	137.71	Off


Analysis: Report and wigglegram of currently available measurements in the specified analyses. Display current ethnic norm group. Click the norm group name to change the default ethnic norm group.

Clicking the analysis name (“Default” in the left example) will make all measurements within that analysis visible in the rendering window. Clicking an analysis subgroup name will turn on visibility for any measurements under that subgroup.

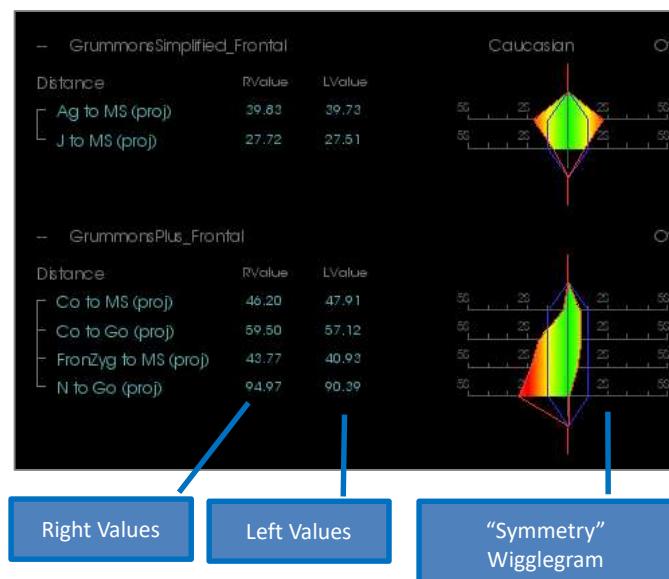
For VCA analyses, clicking the analysis name will turn on visibility for any VCA-configured measurements in the rendering window. Clicking an analysis subgroup name will turn on visibility for any VCA-configured measurements under that subgroup.

Colored Wigglegram

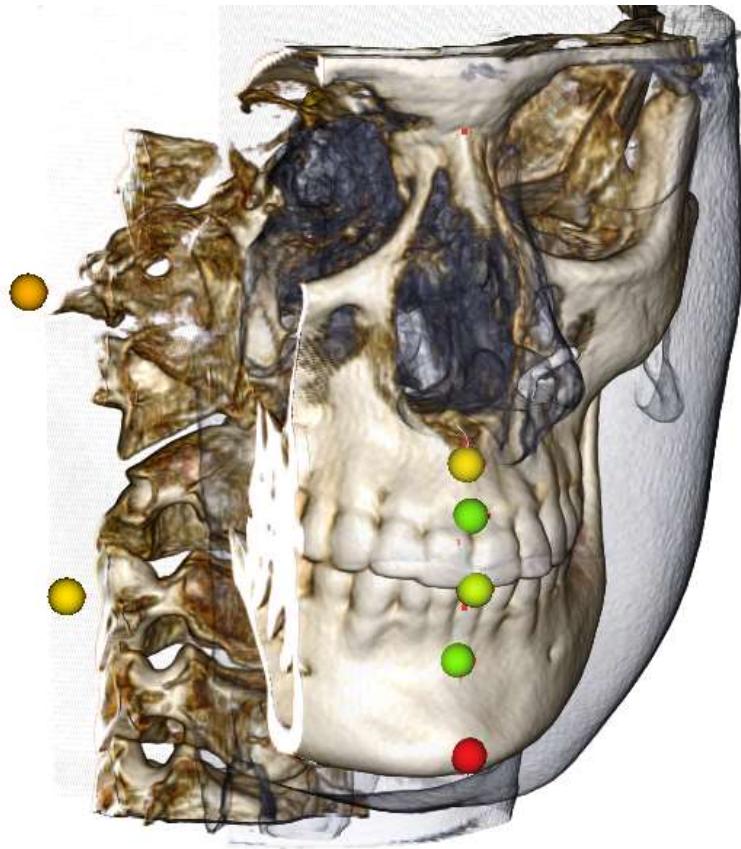
The wigglegram features a user-customizable color gradient to convey analysis results. The color corresponds to the number of standard deviations the measurement value differs from the norm. Ex. Values that differ between 0 and 1 SD will show up as a blend of green and yellow.

Configure visibility settings in the Visual Preferences dialog:

Features:


- (Color) Visibility On/Off
- Customizable 4-Color Gradient
- Color Correlation with VCA Color Indicators
- Compatible with Frontal Analysis Wigglegram (see below).

Warning: The analysis results are dependent on the norm values that are configured within each configuration file, which may contain predefined as well as user-defined data. The predefined norms that are available upon installation may or may not be based on accepted clinical values for the respective measurements. Users must verify the validity of norm values that will be used before applying this function on patient data. For further questions regarding the function, configuration, and validity of norm data, please contact the Osteoid Support Department at (408) 333-3484 or dental@osteoidinc.com.

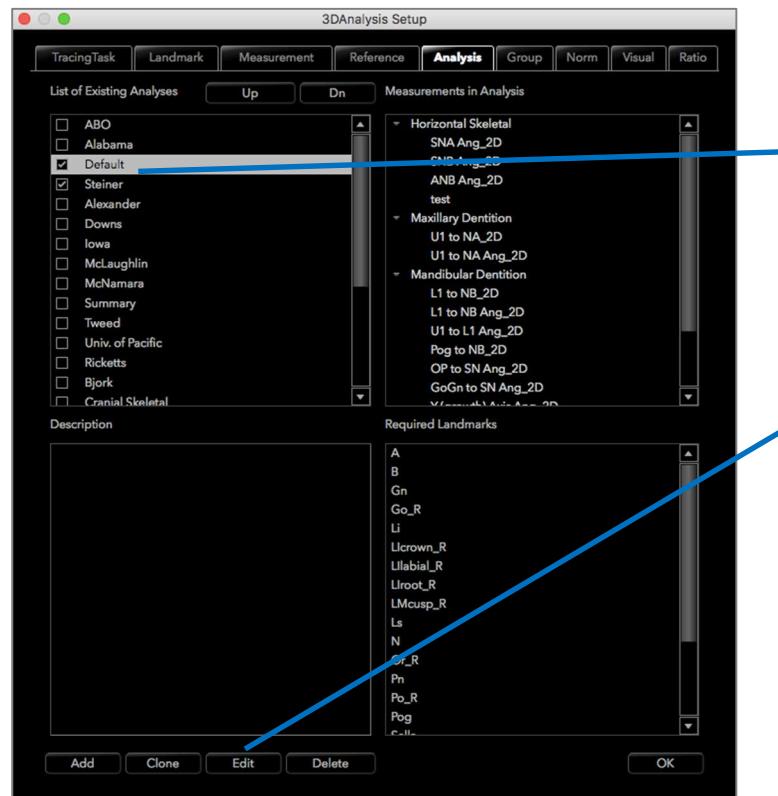

Frontal Analysis Mode:

The measurement values and wigglegram take a new format when an analysis is configured to be of a “frontal” variation. Refer to the **3DAnalysis: Advanced Analysis Configurations** section (pg. 177) for more information.

3DAnalysis: VCA Mode

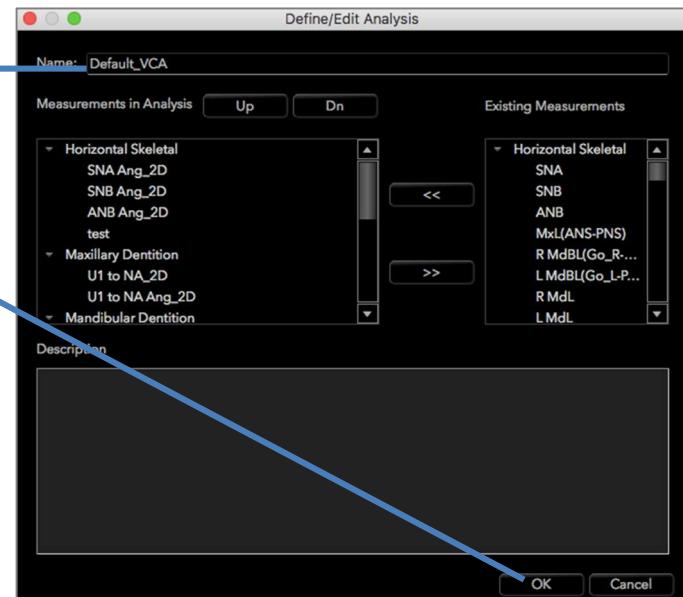
3DAnalysis capitalizes on the fact that a large part of an analysis can occur visually. With the introduction of VCA (Visual Craniometric Analysis) colored indicators, an analysis can be customized to reveal an overall picture of a patient's clinical state by providing only the necessary level of numerical detail without overburdening the user. While the quantitative information is still available, the colored indicators draw attention back to the most necessary part of the analysis – the volume – while also saving time and effort.

How It Works: VCA colored ball indicators are tethered to individual measurements. When these measurements are selected in the Analysis Tab (by subgroups or analysis name), the VCA ball indicators will appear in the rendering window with a color that is dependent on the deviation of the measurement value from the norm. The proper configuration can allow the user to determine the areas that require attention without needing to see the exact measurement values.


Configuring a VCA:

- Change the name of the analysis to indicate a VCA configuration
- Configure individual measurements values to have VCA landmarks
- Trace the case, turn on VCA landmarks in the Text View

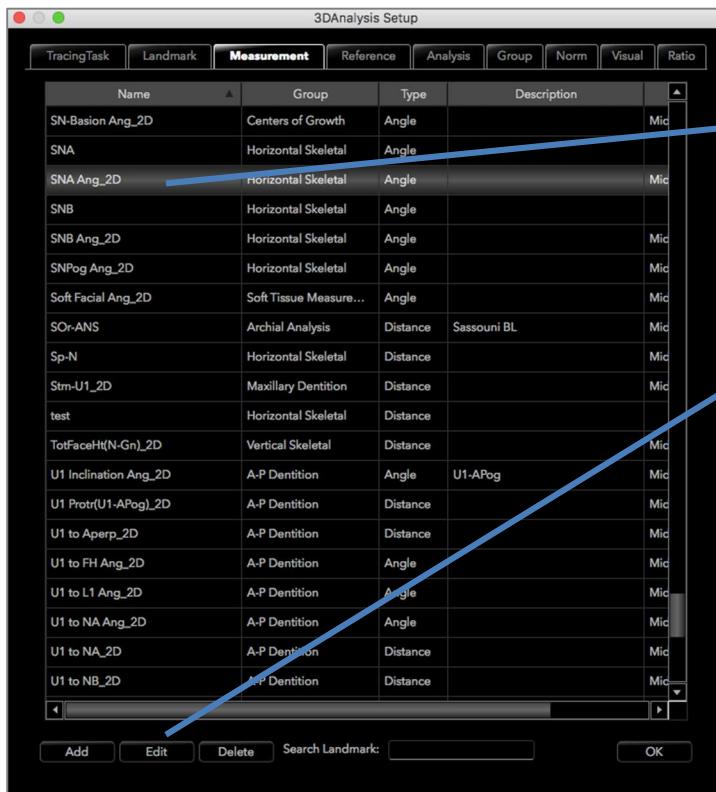
Continue on in the section for more details on these tasks.


Choose An Analysis/Rename to VCA Configuration:

Any analysis can be configured to include VCA indicators. Open the 3DA Setup dialog with the icon and navigate to the Analysis Tab.

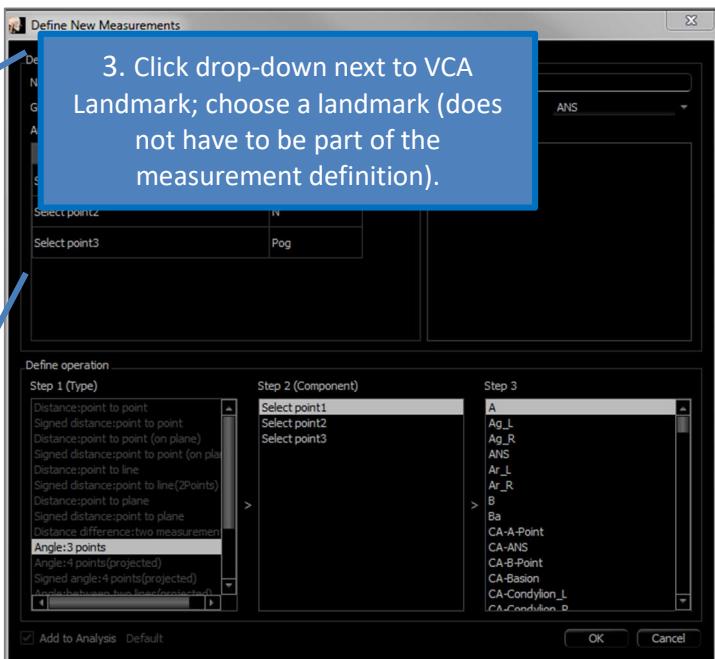
1. Left click on the name of the desired analysis. "Default" chosen in this example.

2. Click the **Edit** button.



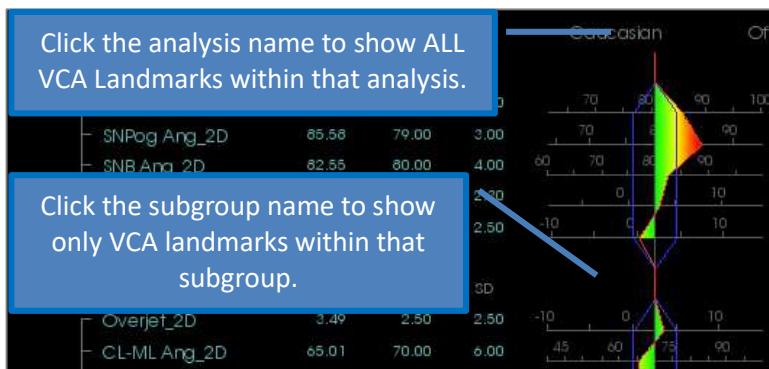
3. The Define/Edit Analysis window will appear. Change the name to end in "_VCA".

4. Click **OK** to exit the Define/Edit Analysis window. Then, click **OK** to exit 3DA Setup completely.


Configure Individual Measurements:

Open the 3DA Setup dialog with the icon and navigate to the Measurement tab of this window (third from the right). For this step, it would help to have a list of measurements handy as a reminder of which ones to configure.

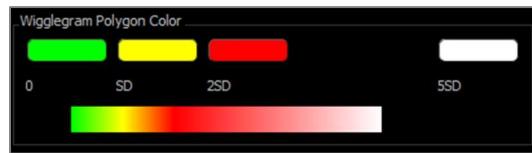
1. Left-click on the line of a measurement you want to configure.


2. Click **Edit**.

4. Click **OK** to exit the window.
Repeat for additional measurements.
(Note: Multiple measurements cannot be configured to the same VCA landmark.)

Trace the Case/Turn on VCA Landmark Visibility:

Trace the case so that the necessary landmarks are completed for the analysis as well as for the VCA landmarks. Alternatively, a pre-traced case can be opened.



If the VCA landmarks fail to appear, causes may be:

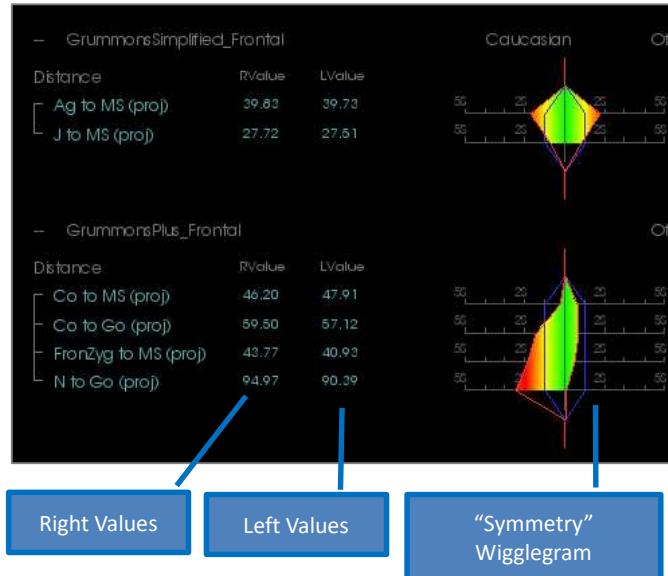
- The analysis name is not properly configured. (See pg. 177.)
- The VCA landmarks configured to the measurements are not properly configured or traced. (See pg. 177.)
- There is no available norm data for the measurement.

Additional VCA Settings (Visual Preferences) :

- VCA indicator color settings are tethered to the Wigglegram Polygon Color. Change the settings for the colored wigglegram to change the color of VCA indicators.
- VCA indicator ball radius can be set to between 2 and 9 mm.
- VCA indicator ball opacity can be changed to an opacity percentage preset (0, 25, 50, 75, 100).

3DAnalysis: Advanced Analysis Configurations

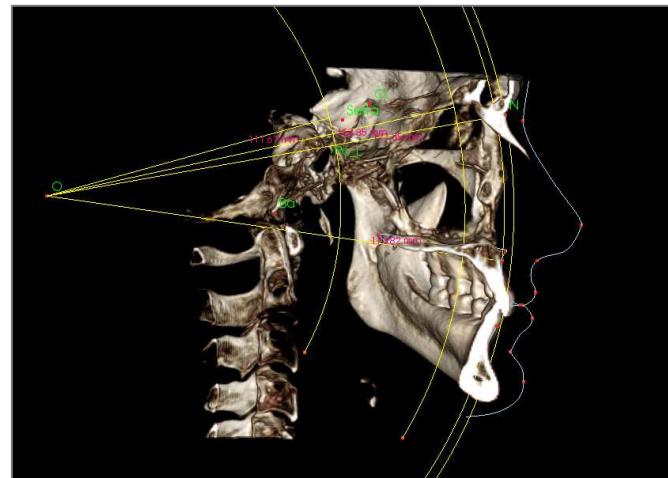
3DAnalysis can be configured to become a more effective tool for certain analyses. Currently, additional features are supported for “frontal” analyses as well as the Sassouni Analysis.


Configuring a Frontal Analysis

The wigglegram features a special “Frontal Analysis” mode to support frontal analyses. The benefit of this mode is a more succinct format of measurement presentation. Both the measurement values and wigglegram adapt to show the left and right values of a certain measurement on the same line.

Two Aspects to Configure:

- Measurement pairs that are identical except for a “_R” or “_L” to indicate the left and right side (ex. Co_R to MSP, Co_L to MSP)
- The analysis name must end in “_Frontal”.

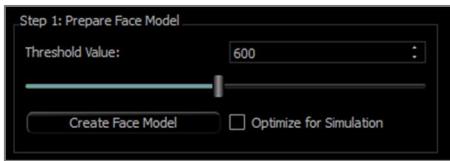
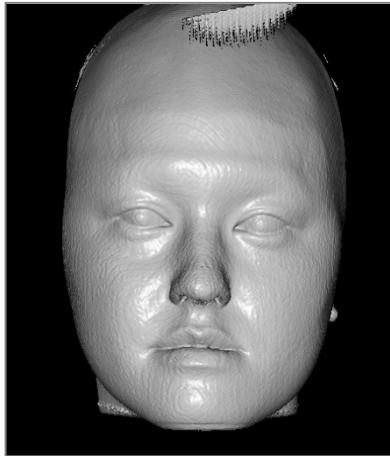

NOTE: A frontal analysis can only contain pairs of symmetry measurements (_L, _R). If the analysis contains measurement pairs AND singular measurements, the analysis must be split. The singular measurements should be in a separate analysis without the “_Frontal” suffix.

Configuring a Sassouni Analysis

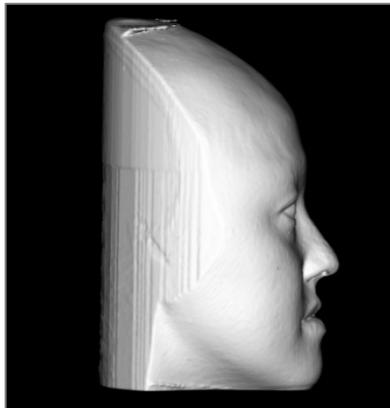
A special feature exists that creates an automatic Sassouni O-Point if the appropriate data is present. The O-Point definition is based on the generally accepted Sassouni principle that states it is the midpoint of the shortest vertical line segment that contacts all four prerequisite planes.

To Automatically Generate O-Point: The following four default planes must be traced: Parallel, Mandibular, Maxillary, and Occlusal Plane R. After tracing these planes, open/close to refresh the Create Tracing window to activate the O-Point. The Sassouni O-Point is a 2nd Tier landmark.

NOTE: The Parallel Plane requires the Supraorbitale Plane to be defined. The following Sassouni-specific landmarks are therefore required: **Si, RO, Cl.**

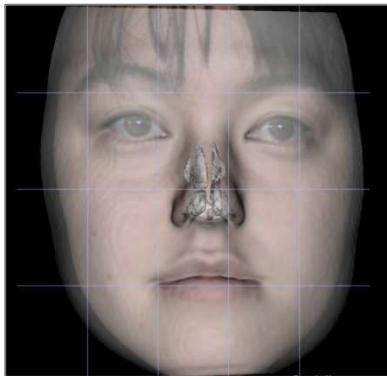


3DAnalysis: Create Face Photo

3DAnalysis allows the user to wrap a common digital photograph over the patient's soft tissue. This creates a realistic 3D "skin" that takes the texture of the photograph and can be used to great effect in performing soft tissue simulations and patient demonstrations. The steps to creating a face photo wrap are as follows:

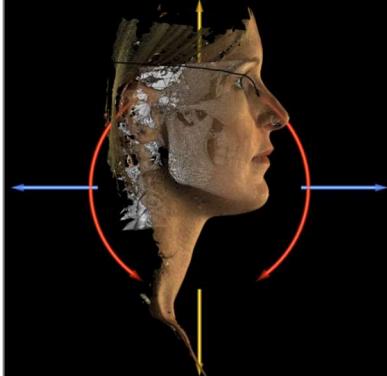
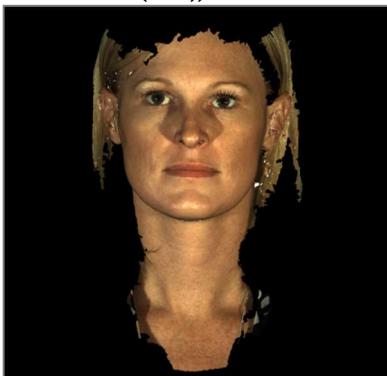


Click the **Create Face Photo** to open the dialog. There are two methods available.

Generate face from photo:

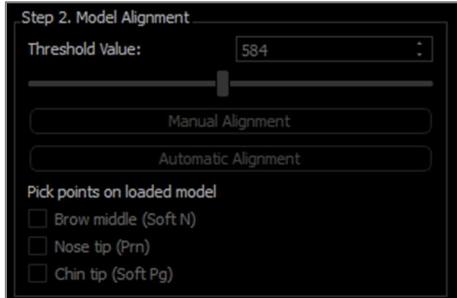


The objective is to move the slider until a smooth soft tissue frontal profile is visible. This setting will determine what level of tissue is used when creating the face model. Click **Create Face Model** when the correct setting is found. The face model will be created and automatically smoothed.

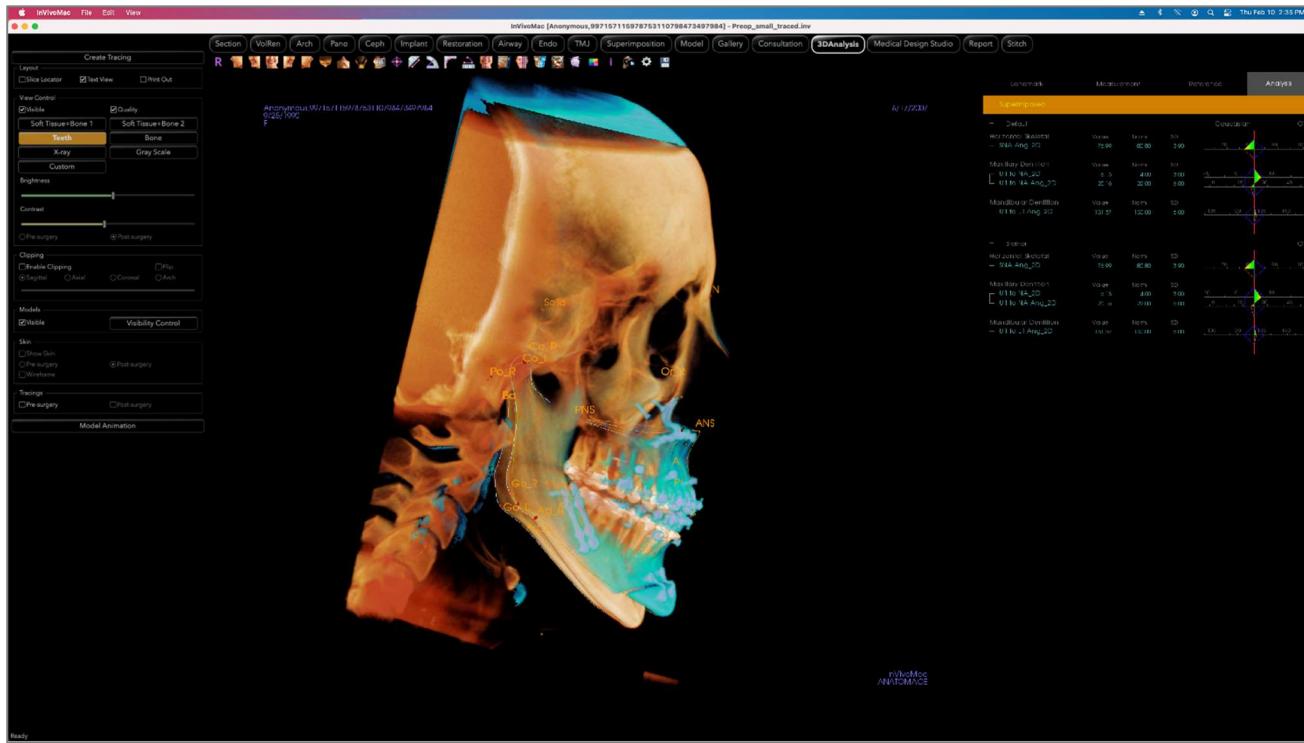



"Optimize for Simulation": When checked, the software will automatically reduce the number of triangles used in the model to 40,000. This is the optimal setting for soft tissue simulations.

Click **Apply Cutting**. Use three cuts to trim away unnecessary parts of the face (that may cause distortion when the photo is applied). The first will cut through the face coronally just in front of the ear. The second will cut along the jaw line, making sure the cutting plane aligns with the mandibular plane. The third will cut axially across the top of the skull. Use the arrows to move the cutting plane and click the **right mouse button** to perform the cut. Click **Finish Cutting** when all unnecessary sections have been removed.

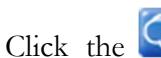

Load Face (.obj):

Click **Load Photo** and choose the appropriate photo from the file browser. Check to turn on “Make Face Model Transparent” and “Show Registration Grid” (intersections indicate registration points) and use image navigation tools to align the photo, taking special care in the lip and nose regions. Click **Apply Photo Wrapping** when the correct alignment is found.


Load the 3D object file and the corresponding texture file.

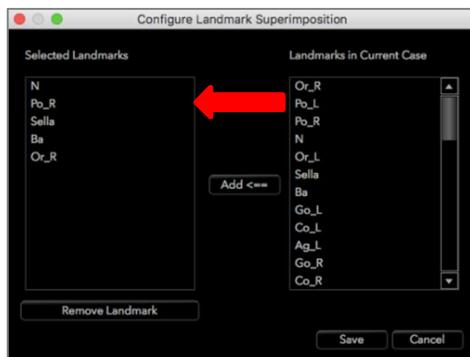
The textured skin model can now be aligned to the volume either manually using the widget tool or automatically if the soft tissue profiles of the case have been traced. The automatic alignment process involves placing landmarks onto the textured skin model.

3DAnalysis: Landmark-Based Superimposition

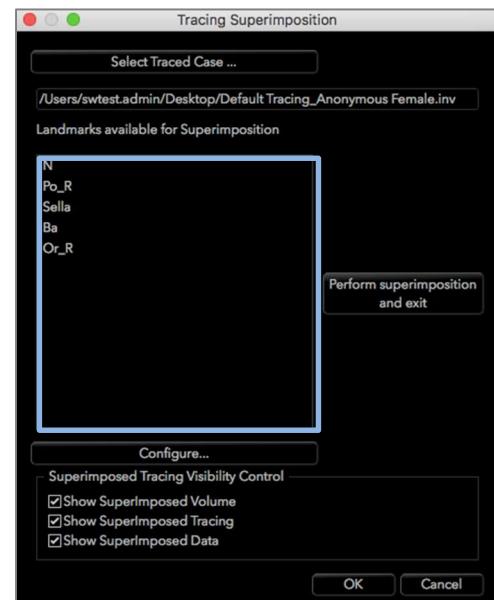
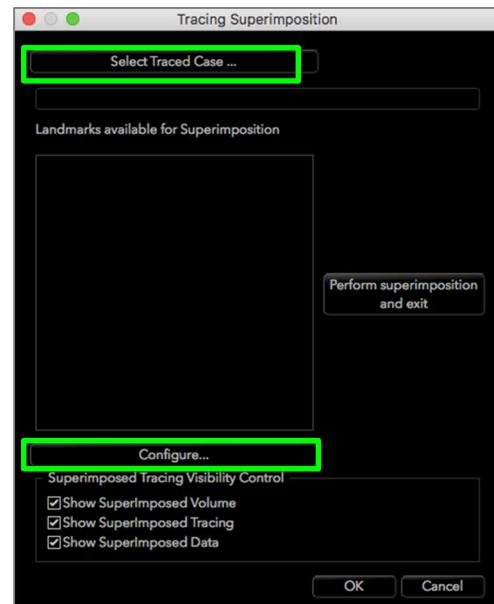

A superimposition can be performed on the current tracing using any saved tracing or case (.inv, .ctr, or .dcm) file and user-configured landmarks. This feature combines the visual analysis aspect of volume superimposition with the quantitative details provided by a cephalometric analysis.

Features:

- View measurements from both volumes in the same window with easy toggle switching
- Visibility On/Off for superimposed volume, tracing, or data
- Automatic superimposition of volumes after one-time landmark configuration setup
- Allows for a template-based analysis (with superimposed saved tracing)
- Compatibility with VCA and frontal configurations
- Orientation synchronization with the Superimposition Tab


Performing Landmark-Based Superimposition

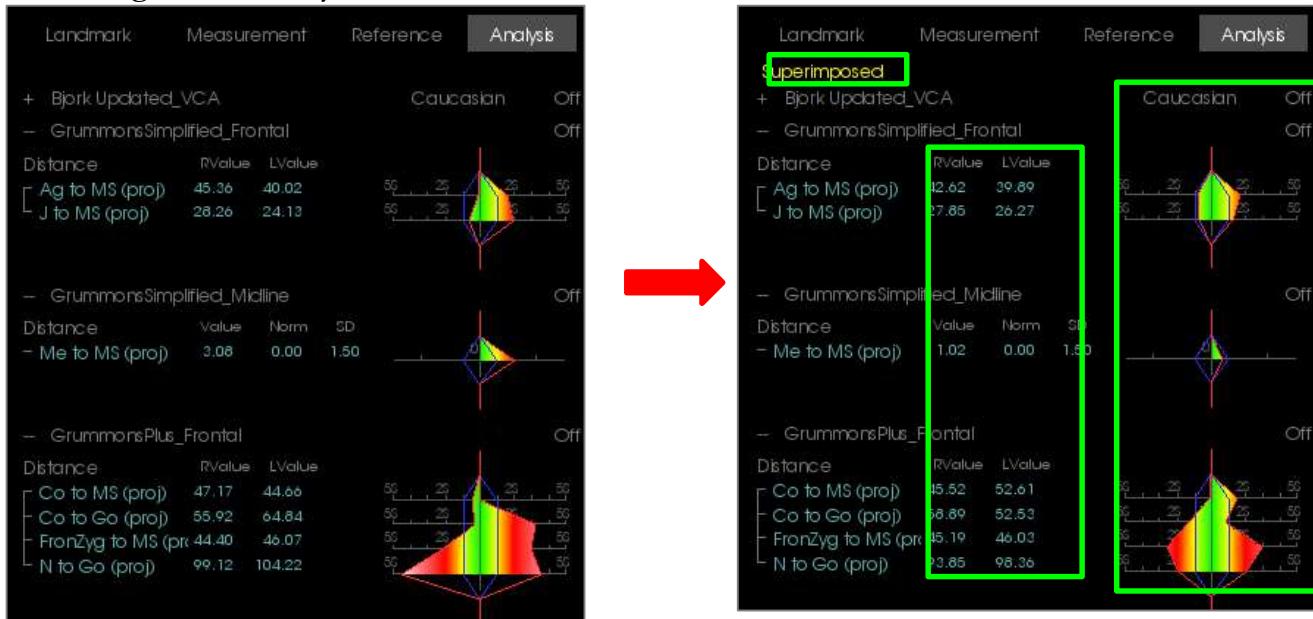
Click the **Superimpose Tracing** icon to open the dialog.



After tracing a case in 3DAnalysis, the user can select another traced case (.inv) or tracing file (.ctr) to superimpose over the original.

- Click **Select Traced Case...** to browse for the file. Select the case or saved tracing and click **Open** to close the browser. If an untraced case is chosen, an error will appear indicating that there is no tracing data.
- Click **Configure...** to open the Configure Landmark Superimposition window:

- Select a minimum of four landmarks from the current landmark list and click **Add** to move them to the left. Landmarks on the left will be checked with the superimposed tracing. If they have been traced, these landmarks will be used to register the two scans. Click **Remove Landmark** to remove landmarks from the superimposition registration. Click **Save** to Exit.
- **Verify the available landmarks.** If the configured landmarks do not appear in this section, there is no tracing data available for those landmarks in the selected case.
- Click **Perform Superimposition And Exit** to perform the registration with the current configuration. This window will automatically close.
- Revisit this window to perform superimposition with another case (deleting the current superimposition), reconfigure the superimposition landmarks, and to toggle the following visibility options (“Superimposed Volume,” “Superimposed Tracing,” and “Superimposed Data”).

Tip: For performing a template-based analysis, the user can superimpose the saved tracing template to the patient scan using mid-sagittal plane landmarks.



Superimposition Text View

After a superimposition has been performed with a traced case, the Text View can be toggled to show either the tracing/analysis data for the current or superimposed case.

The Text View can be toggled by:

- Checking/unchecking the box next to “Show SuperImposed Data” in the Superimpose Tracing dialog.
- Clicking the “Superimposed” or ”Default Tracings” banner above the text data to toggle data sets.
- Pressing “s” on the keyboard.

The yellow “Superimposed” text indicates which data set the Text View is currently displaying. If the superimposed tracing contains at least the same amount of corresponding data as the current, differences will only be seen in the measurement value section and the colored wigglegram, allowing the user to easily compare the two sets of data.

If toggling reveals a discrepancy in the available measurements, landmarks, or references, then check to make sure that the two cases contain the same traced landmarks and profiles.

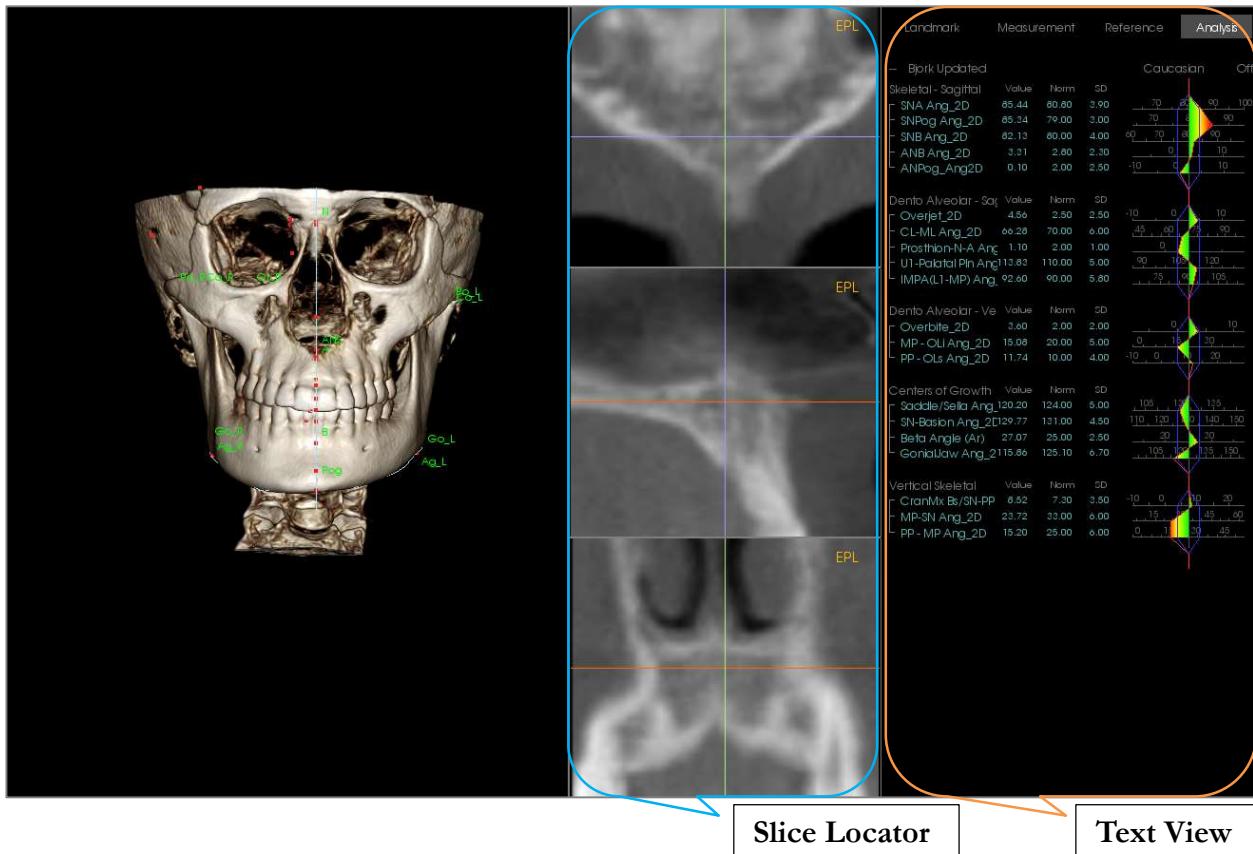
Visual preferences are locked for the superimposed case – only the visual preferences for the current case can be changed. Alter these settings to help differentiate between the two data sets, such as angle and line color. Superimposed tracing color will be yellow by default.

How Does 3DAnalysis Work with the Superimposition Tab?

3DAnalysis landmark-based superimposition and Import Volume within the Superimposition Tab achieve the same basic purpose with some differences only in the available tools and method of superimposition. The compatibility of the two methods of superimposition will be explained below.

Only one superimposition can be supported at a time

- Users can either choose to import a saved tracing using the **Import New Volume** function of Superimposition tab or the **Superimpose tracing** function of 3DAnalysis. The volume will be visible in both views, with additional tracing data visible in 3DAnalysis if it exists.
- Trying to superimpose an additional case in either tab with a superimposition already performed will overwrite the currently superimposed case. **Mirror Own Volume** will also overwrite the current superimposition.
- Changes in orientation performed in one tab will affect the other tab. The benefit of this is that a user can superimpose to landmarks in 3DAnalysis and then move to the Superimposition tab and perform an additional volume-based registration to fine-tune the location of the superimposition.

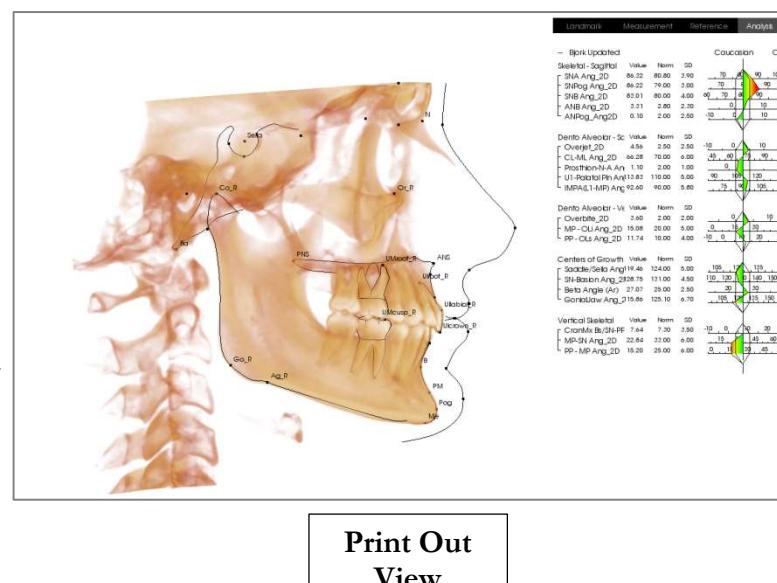

The following settings must be performed in the Superimposition Tab (to take effect in 3DA):

- Clipping
- Volume rendering presets
- Brightness and contrast settings
- Volume Registration
- Adjustments by Move Widget

The following settings overlap between the two tabs:

- Superimposed volume on/off
- Landmark registration (in 3DA, this is performed automatically with preconfigured landmarks)

3DAnalysis: Layout Options



Slice Locator: This three-paned window allows the user to adjust the placement of points using multiple viewing angles of the same location: axial, coronal, and sagittal. This tool is important for placing landmarks that require increased accuracy, such as the top of the condyle head. The panes are zoomed-in to provide additional accuracy.

Text View: Contains visibility controls and values for landmarks, measurements, reference planes, and analysis configurations.

Print Layout: This layout loads preconfigured visibility options that are printer-friendly so the user can easily share or save a physical copy of the analysis results. In this layout mode, printing will automatically occur with the volume in life-size.

Zoom-in and zoom-out features will be disabled to maintain a life-sized volume, and all text and tracing will be black by default. Both the volume and colored wigglegram will maintain color unless configured differently.

3DAnalysis: 3DAnalysis Settings

Press the 3DAnalysis **Settings** icon, and a window appears for creating and/or defining any of the following:

- **Tracing Tasks**
- **Landmarks**
- **Measurements**
- **References (Lines, Planes)**
- **Analyses**
- **Groups**
- **Population Norm Data**
- **Visual Preference**
- **Soft Tissue Ratios**

Tracing Task: This tab shows the definition list of current tracing task series. The tracing task will be performed in the order displayed on this list. To change the tracing task order, press the **Edit** button in the bottom left corner of the window. According to the definition of coordinate system, the appropriate coordinate system defining tasks will always be the starting tasks and added automatically.

3DAnalysis Setup

Name	Type	Traced	View State	Description
ANS	Point	Yes	ANS	
Ba	Point	Yes	Ba	
Coord_sys ANS	Point	Yes	ANS	
Coord_sys Ba	Point	Yes	Ba	
Coord_sys N	Point	Yes	N	
Coord_sys Or_R	Point	Yes	Or_R	
Coord_sys Po_R	Point	Yes	Po_R	
Left Mandible Profile	Profile	Yes	Left Mandible Profile	
Lower Right Incisor P...	Profile	Yes	Lower Right Incisor Pro...	
Lower Right Molar Pr...	Profile	Yes	Lower Right Molar Profile	
Lower Soft Tissue Pro...	Profile	Yes	Lower Soft Tissue Profile	
Maxillary Profile	Profile	Yes	Maxillary Profile	
N	Point	Yes	N	
Or_L	Point	No	Or_L	
Or_R	Point	Yes	Or_R	
Po_L	Point	Yes	Po_L	
Po_R	Point	Yes	Po_R	
Right Mandible Profile	Profile	Yes	Right Mandible Profile	
Sella	Point	Yes	Sella	
Symphysis Profile	Profile	Yes	Symphysis Profile	

Edit OK

- **Edit:** Opens “Tracing Guide” dialog to edit the tracing task list or adjust the view states for individual tracing tasks. For more information, refer to **3DAnalysis: Tracing Guide** (pg. 196).

Landmark: This tab shows the definition list of all available landmarks that can be used for defining measurements and references. Each landmark has a unique name and will be displayed in every view within the Rendering Window. Landmarks have a group definition for sorting when Text View is activated. User-defined landmarks are marked with a star (*) in column 'U' Predefined landmarks cannot be deleted. User-defined landmarks cannot be deleted when used by measurements or references.

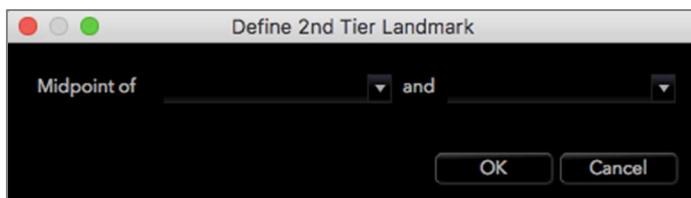
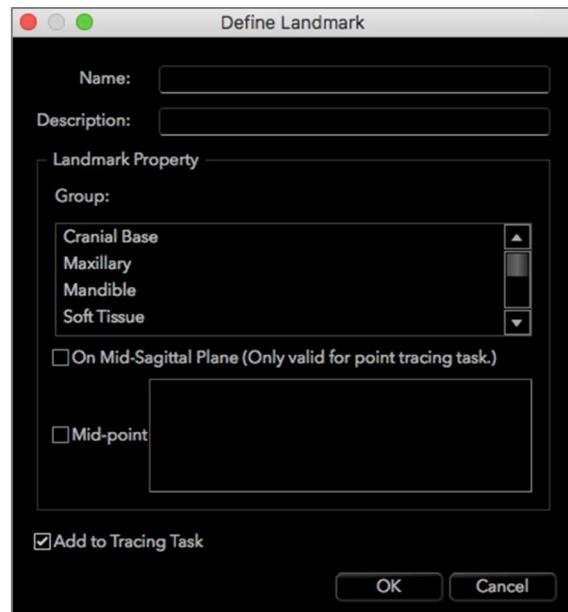
3DAnalysis Setup

TracingTask	Landmark	Measurement	Reference	Analysis	Group	Norm	Visual	Ratio
	Name	▲	U	Group	Type	Description		
	A			Maxillary	Volume			
	Ag_L	*		Mandible	Volume	Antegonion (L)		
	Ag_R	*		Mandible	Volume	Antegonion (R)		
	ANS			Maxillary	Volume			
	Ar_L			Mandible	Volume	Left Articular		
	Ar_R			Mandible	Volume	Right Articular		
	B			Mandible	Volume			
	Ba			Cranial Base	Volume	Basion		
	CA-A-Point	*		Maxillary Bones	Volume			
	CA-ANS	*		Maxillary Bones	Volume			
	CA-B-Point	*		Mandibular Bone	Volume			
	CA-Basion	*		Occipital Bone	Volume			
	CA-Condylion_L	*		Mandibular Bone	Volume			
	CA-Condylion_R	*		Mandibular Bone	Volume			
	CA-FOP	*		Dentition	Volume			
	CA-FOP-LA	*		Dentition	Volume			
	CA-FOP-LP	*		Dentition	Volume			
	CA-FOP-RA	*		Dentition	Volume			
	CA-FOP-RP	*		Dentition	Volume			
	CA-Glabella	*		Frontal Bone	Volume			
	CA-Gonion_L	*		Mandibular Bone	Volume			

Add Edit Delete OK

- **Add:** Create a new landmark
- **Edit:** Edit currently selected landmark
- **Delete:** Delete currently selected user-defined landmark

Special Landmark Properties



Underneath the group list, there are two landmark properties that can be modified using the adjacent checkboxes:

On Mid-Sagittal Plane

Projects a landmark on any part of the volume directly to the defined mid-sagittal plane. Cannot be used to define the coordinate system.

Midpoint

Automatically creates a midpoint between two landmarks when both are traced; there will be no tracing task option. Clicking the checkbox will bring up a Define 2nd Tier landmark submenu with two drop-down boxes for selecting the landmarks. 2nd Tier indicates that the placement of the landmark is dependent on the placement of other landmarks. Can be used to define the coordinate system.

Measurement: This tab shows the definition list of all available measurements. Every measurement has a unique name and will be displayed in every view within the rendering window. Measurements have a group definition for sorting when Text View is activated. Measurements can be defined in several ways using default and/or user-defined landmarks, reference lines, and reference planes. Measurements can be in 3D or projected to a specified reference plane for supporting 2D measurements. Measurements cannot be deleted when used in an analysis.

3DAnalysis Setup

Tracing Task	Landmark	Measurement	Reference	Analysis	Group	Norm	Visual	Ratio
		Name	Group	Type	Description			
		A to N-Pog_2D	Horizontal Skeletal	Distance				
		A-B Plane Ang_2D	Horizontal Skeletal	Angle	AB-NPog	Mic		
		A-Point Arc	Radial Skeletal	Distance				
		Ag_L to MS (proj)	Distance	Distance	Front			
		Ag_R to Ag_L (proj)	Horizontal Skeletal	Distance	Front			
		Ag_R to Ag_L Height	Height Difference	Distance	Front			
		Ag_R to MS (proj)	Distance	Distance	Front			
		ANB	Horizontal Skeletal	Angle				
		ANB Ang_2D	Horizontal Skeletal	Angle	Mic			
		Ang Maxillary-Cranial_Planes	Horizontal Skeletal	Angle	Angle between Maxillary and Pa...			
		Ang Maxillary-Mandibular_Planes	Horizontal Skeletal	Angle	Angle between Maxillary and M...			
		Ang of Convexity_2D	Horizontal Skeletal	Angle	NA-APog	Mic		
		ANPog_Ang2D	Horizontal Skeletal	Angle	Bjork			
		ANS Arc	Radial Skeletal	Distance				
		ANS-Cranial_Plane	Vertical Skeletal	Distance	Cranial Base plane = Parallel Plane			
		ANS-Mand_Plane	Vertical Skeletal	Distance	Mic			
		ANS-Me	Vertical Skeletal	Distance	Mic			
		ANS-SOr	Vertical Skeletal	Distance	Mic			
		AntCranBase(SN)_2D	Horizontal Skeletal	Distance	Mic			
		Anterior Arc	Radial Skeletal	Distance				

Add Edit Delete Search Landmark: OK

- **Add:** Create a new measurement.
- **Edit:** Edit currently selected measurement.
- **Delete:** Delete currently selected measurement.
- **Search Landmark:** Search for measurements by landmark.

Reference: This tab shows the definition list of all available references. Every reference has a unique name and will be displayed in every view within the rendering window. References have a group definition for sorting when Text View is activated. Reference lines and reference planes can be defined in several ways using landmarks and/or other reference lines and planes. References cannot be deleted when used to define other measurements, references or the coordinate system (ex: mid-sagittal plane and frontal plane).

3DAnalysis Setup

Name	Type	Description
A FH Perp	Plane	Passing A and perpendicular to Frankfort Horizontal Plane R and Mid-Sagittal plane
AB line	Line	
APog line	Line	
Ar-B Perp Plane	Plane	
Ar-B Plane	Plane	
B Perp MP	Plane	Sassouni BL
Ba-N Plane	Plane	Passing Ba and N, perpendicular to Mid-Sagittal plane
CA-Facial Plane Max	Plane	
CA-Facial Plane Min	Plane	
CA-FH-Line-R	Line	
CA-Frankfort Plane	Plane	
CA-L1-Plane	Plane	
CA-L6-Plane	Plane	
CA-LL1	Line	
CA-LL6	Line	
CA-LR1	Line	
CA-LR6	Line	
CA-Mandibular Plane	Plane	
CA-Maxillary Plane	Plane	
CA-Mid-Sagittal Plane	Plane	

Add Edit Delete Search Landmark: OK

- **Add:** Create a new reference line or reference plane.
- **Edit:** Edit currently selected reference.
- **Delete:** Delete currently selected reference.
- **Search Landmark:** Search for references by landmark.

Analysis: This tab shows the definition list of all available analyses. Analyses include existing 2D analysis standards (ex: McNamara, Ricketts, Steiner). A custom analysis can be created using default and/or user-defined measurements. Only checked analyses are reported within the Text View, and only default analyses can be compared to existing data using norm data (compared visually using wigglegram). User-defined analyses can be compared to existing data if the data is added manually (see the **Norm Data** section, pg. 193).

The tracing tasks required for all of the measurements of the selected analysis are displayed under Required Landmarks but may need to be manually added into the Tracing Tasks list (see **3DAnalysis: Tracing Guide**, pg. 196).

- **Add:** Create a new analysis.
- **Clone:** Make a copy of the currently selected analysis.
- **Edit:** Edit currently selected analysis.
- **Delete:** Delete currently selected analysis.

Group: This tab shows the definition list of all available groups used for landmarks, measurements, and norm data. By default, four predefined user Norm Data Groups (My African American, My Asian, My Caucasian and My Latin) are automatically generated within the definition list. A user-defined Norm Data Group can reference an external norm data file or CSV file. This file can be an accumulated measurement archive file.

3DAnalysis Setup

TracingTask		Landmark	Measurement	Reference	Analysis	Group	Norm	Visual	Ratio
Name	U	Category	Description						
A-P Dentition		Measurement group							
African American		Norm Data group							
American Indian		Norm Data group							
Angles, Ratios		Measurement group							
Anglo American		Norm Data group							
Archial Analysis		Measurement group							
Asian		Norm Data group							
CA-Dental		Measurement group							
CA-Dental-Sagittal		Measurement group							
CA-Dental-Symmetry		Measurement group							
CA-Dental-Transverse		Measurement group							
CA-Dental-Vertical		Measurement group							
CA-Skeletal		Measurement group							
CA-Skeletal-Sagittal		Measurement group							
CA-Skeletal-Symmetry		Measurement group							
CA-Skeletal-Transverse		Measurement group							
CA-Skeletal-Vertical		Measurement group							
CA-Symmetry		Measurement group							
Caucasian		Norm Data group							
Centers of Growth		Measurement group	Bjork						
Chi		Norm Data							
<input type="button" value="Add"/>		<input type="button" value="Edit"/>	<input type="button" value="Delete"/>	<input type="button" value="OK"/>					

- **Add:** Create a new group.
- **Edit:** Edit currently selected group.
- **Delete:** Delete currently selected group.

Norm Data: This tab shows the norm data (mean and standard deviation of measurements) list of all available ethnic Norm Data Groups that can be used for analysis and displayed graphically using the wigglegram. The norm data can be changed at any time in 3DAnalysis to compare the patient's tracings with data from several ethnic groups. The default Norm Data Group is Caucasian, but 3DAnalysis includes norm data for other well-known ethnic groups. Custom Norm Data Groups can be defined using external norm data files (see **Group** section, pg. 192). The mean and standard deviation of new measurements can also be defined manually within the Norm Data tab.

3DAnalysis Setup

TracingTask	Landmark	Measurement	Reference	Analysis	Group	Norm	Visual	Ratio
Select Default Norm Group: Caucasian								
Name	Mean	SD	# of cases	Type	Description			
A to N-Pog_2D	1.9	2	0	Distance				
A-B Plane Ang_2D	-6.5	3	0	Angle				
A-Point Arc	0	0	0	Distance	reference arc, not significant			
ANB Ang_2D	2.8	2.3	0	Angle				
Ang of Convexity_2D	7.4	3	0	Angle				
ANPog_Ang2D	2	2.5	0	Angle				
ANS Arc	0	0	0	Distance	reference arc, not significant			
AntCranBase(SN)_2D	75.3	3	0	Distance				
Anterior Arc	0	0	0	Distance	reference arc, not significant			
AntFaceHt(N-Me)_2D	128.5	5	0	Distance				
Beta Angle (Ar)	25	2.5	0	Angle				
Chin Ang(Id-Pg-MP)_2D	70	5	0	Angle				
CL-ML Ang_2D	70	6	0	Angle				
CranMx Bs/SN-PP Ang_2D	7.3	3.5	0	Angle				
Facial Axis Ang_2D	90	3.5	0	Angle				
Facial Ln Inter FH Ang_2D	85	3	0	Angle				
FH-SN Ang_2D	6	4	0	Angle				
FMA(MP-FH) Ang_2D	26	5	0	Angle				
FMIA(L1-FH) Ang_2D	63.9	8.5	0	Angle				

Add Edit Delete OK

- Add:** Create a new norm data.
- Edit:** Edit currently selected norm data.
- Delete:** Delete currently selected norm data.

Visual Preference: This tab contains options for changing the colors and attributes of 3DAnalysis objects and selecting color usage for Print Layout. **Select Projection** can select projection type of light source from volume object with parallel projection set by default. When “Use Foreground Color” is unchecked, all 3DAnalysis objects (landmarks, measurements, references, etc.) are displayed in color on Print Layout.

Soft Tissue Ratios: This tab contains the soft tissue deformation ratios across different axes for 3D Surgery manipulations. Checking “R-L Matches A-P” matches the R-L values to the A-P values of the respective landmarks automatically. **Reset to Defaults** reverts the values to the ones shown below.

3DAnalysis Setup

Tracing Task Landmark Measurement Reference Analysis Group Norm Visual **Ratio**

Soft Tissue Deformation Ratios

	A-P	R-L	S-I
Pn	0.35	0.35	0.1
Ls	0.6	0.6	0.2
Sts	0.6	0.6	0.2
Sti	0.65	0.65	0.65
Li	0.65	0.65	0.65
Soft Pog	0.9	0.9	0.5
Zygoma	0.6	0.6	0.2

R-L Matches A-P **Reset to Defaults**

OK

Warning: Soft tissue prediction is an approximation and may not reflect actual results.

3DAnalysis: Tracing Guide

To open the Tracing Guide window, press either the **Setup** button from the Tracing Tasks window or **Edit** from the Tracing Tasks tab within **Settings**.

Tracing Guide: The Tracing Guide window shows a list of the current Tracing Tasks (left list box) and a list of available Tracing Features (right list box). Within the window, Tracing Tasks can be added, moved, or reordered. The coordinate system can be changed. The best view settings for specific Tracing Tasks can be redefined.

- <: Add the highlighted Available Tracing Feature to the Current Tracing List. All available landmark definitions and predefined profile Tracing Tasks currently not in use are listed in Available Tracing Features box.
- >: Remove the highlighted tracing task from the Current Tracing List. Coordinate system tracing tasks and respective landmarks cannot be removed.
- Up: Change order to move up that selected tracing task. Tracing tasks near the top of the list take priority when creating tracings. Tracing tasks do not take priority over coordinate system tracing tasks and so cannot move above coordinate system tracing tasks.
- Dn: Change order to move down that selected tracing task. Coordinate system tracing tasks cannot move below normal tracing tasks.
- **Coordinate system change:** The coordinate system options are “No Coordinate System,” “by Moving Widget,” or “Picking Landmarks.” Select **Change** to change which landmarks define the coordinate system. (See **3DAnalysis: Coordinate System**, pg. 159.)

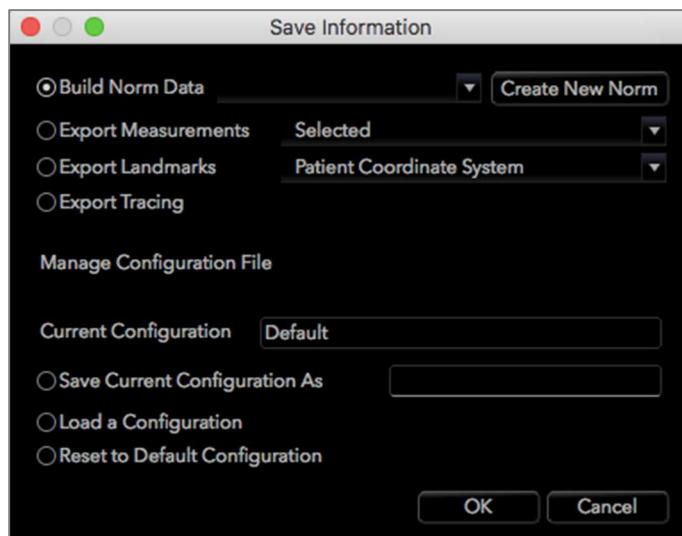
- **Use Current View Settings:** The default view state of a tracing task can be changed. Highlight a tracing task under the “Current Tracing List.” Set the Rendering Window to a preferred view by adjusting the brightness, volume visibility (if tracing on models for certain tasks), orientation, clipping, etc. (relative to the current patient coordinate System). Press **Use Current View Settings** to save the current view state. During tracing, the highlighted tracing task automatically sets the volume to the saved view state.

Note: Before adding the frontal incisor profiles to the current tracing task list, first ensure that the lateral profiles are no longer on the list. The two types of incisor profiles are not intended to be used simultaneously.

3DAnalysis: Default Tracing Tasks and Landmarks

Name	Definition	Description
A	A-Point	Deepest midline point on the premaxilla between the anterior nasal spine and prosthion. Point is determined within the software from the maxillary profile.
Ag_L	Left Antegonion	Highest point of the concavity of the lower border of the ramus where it joins the body of the mandible (left side). Point is determined within the software from the left mandibular profile.
Ag_R	Right Antegonion	Highest point of the concavity of the lower border of the ramus where it joins the body of the mandible (right side). Point is determined within the software from the right mandibular profile.
ANS	Anterior Nasal Spine	Anterior point of nasal spine defined by the maxillary profile.
B	B-Point	Deepest midline point on the mandible between infradentale and pogonion. Point is determined within the software from the symphyseal profile.
Ba	Basion	Anterior point of foramen magnum.
Co_L	Left Condyle	Most posterior superior point on the condyle of the mandible (left side). Point is determined within the software from the mandibular profile.
Co_R	Right Condyle	Most posterior-superior point on the condyle of the mandible (right side). Point is determined within the software from the mandibular profile.
Coord_sys ...	Coordinate System Defining Point	The landmark (preceded with "Coord_sys") will be used to define the coordinate system for subsequent landmarks and tracing tasks.
Custom Profile	Custom Profile	Using points with connecting lines, a custom profile can be made to highlight a certain anatomical feature.
Gn	Gnathion	Point on chin between the menton and pogonion. Point is determined within the software from the symphyseal profile.
Go_L	Left Gonion	Most outward point on the angle formed by the junction of the ramus and the body of the mandible (left side). Point is determined within the software from the mandibular profile.
Go_R	Right Gonion	Most outward point on the angle formed by the junction of the ramus and the body of the mandible (right side). Point is determined within the software from the mandibular profile.
Id	Infradentale	Point of transition from the crown of the most prominent mandibular medial incisor to the alveolar projection. Point is determined within the software from the mandibular profile.
Ils	Soft-tissue B Point	Deepest midline point on the mandible between the infradentale and the pogonion projected onto the soft tissue. Point is determined within the software from the lower soft tissue profile.
Left Mandibular Profile	Left Mandibular Profile	Trace the left-side mandibular profile with a series of points (double-click or right-click to finish tracing). Include the coronoid process, mandibular notch, condyle, and ramus profiles.
Li	Labrale Inferius	Most anterior point of lower lip. Point is determined within the software from the lower soft tissue profile.
Ls	Labrale Superius	Most anterior point of upper lip. Point is determined within the software from the lower soft tissue profile.

Lower Left Incisor Profile	Lower Left Incisor Profile	Define the profile of the lower left incisor using 3 points: 1. Root of lower incisor (LIroot_L) 2. Crown of lower incisor (LICrown_L) 3. Labial point of lower incisor (LILabial_L)
Lower Left Molar Profile	Lower Left Molar Profile	Define the profile of the lower left molar using 3 points: 1. Anterior root of lower molar (LMroot_L) 2. Anterior cusp of lower molar (LMcusp_L) 3. Posterior cusp of lower molar
Lower Right Incisor Profile	Lower Right Incisor Profile	Define the profile of the lower right incisor using 3 points: 1. Root of lower incisor (LIroot_R) 2. Crown of lower incisor (LICrown_R) 3. Labial point of lower incisor (LILabial_R)
Lower Right Molar Profile	Lower Right Molar Profile	Define the profile of the lower right molar using 3 points: 1. Anterior root of lower molar (LMroot_R) 2. Anterior cusp of lower molar (LMcusp_R) 3. Posterior cusp of lower molar
Lower Soft Tissue Profile	Lower Soft Tissue Profile	Trace the profile of the lower soft tissue with a series of points (double-click or right-click to finish tracing). The lower soft tissue is defined as including the lower lip.
Maxillary Profile	Maxillary Profile	Trace the profile of the maxilla with a series of points (double-click or right-click to finish tracing).
Me	Menton	Lowermost point of the mandibular symphysis. Point is determined within the software from the symphyseal profile.
N	Nasion	Central point along the nasofrontal suture.
Or_L	Left Orbitale	Bottom ridge of the orbitale on the maxilla (left side)
Or_R	Right Orbitale	Bottom ridge of the orbitale on the maxilla (right side)
PM	Protuberence Menti	Point above pogonion at top of crest of the symphysis or at the point of recess of the anterior symphyseal curvature. Point is determined within the software from the symphyseal profile.
Pn	Pronasale	Most anterior point of the nose tip. Point is determined within the software from the soft tissue profile.
PNS	Posterior Nasal Spine	Midpoint of the base of the palatine bones at the posterior margin of the hard palate. Point is determined within the software from the maxillary profile.
Po_R	Porion (right)	Upper ridge of the porion (right side)
Po_L	Porion (left)	Upper ridge of the porion (left side)
Pog	Pogonion	Most anterior point on the symphysis of the mandible. Point is determined within the software from the symphyseal profile.
Pr	Prosthion	Most anterior point of the maxillary alveolar process in the midline. Point is determined within the software from the maxillary profile.
Right Mandibular Profile	Right Mandibular Profile	Trace the right-side mandibular profile with a series of points (double-click or right-click to finish tracing). Include the coronoid process, mandibular notch, condyle, and ramus profiles.
Sella	Sella Turcica	Center of sella turcica


Soft N	Soft-tissue Nasion	Deepest point on the concavity of the soft tissue profile overlying the area of the frontonasal suture. Point is determined within the software from the soft tissue profile.
Soft Pog	Soft-tissue Pogonion	Most anterior point on the soft tissue chin in the mid-sagittal plane. Point is determined within the software from the soft tissue profile.
Sti	Stomion inferius	Most superior point located on the lower lip. Point is determined within the software from the lower soft tissue profile.
Sts	Stomion superius	Most inferior point located on the upper lip. Point is determined within the software from the upper soft tissue profile.
Symphyseal Profile	Symphyseal Profile	Trace the profile of the symphysis with a series of points (double-click or right-click to finish tracing).
Upper Left Incisor Profile	Upper Left Incisor Profile	Define the profile of the upper left incisor using 3 points: 1. Root of upper incisor (UIroot_L) 2. Crown of upper incisor (UIcrown_L) 3. Labial point of upper incisor (UIlabial_L)
Upper Left Molar Profile	Upper Left Molar Profile	Define the profile of the upper right molar using 3 points: 1. Anterior root of upper molar (UMroot_L) 2. Anterior cusp of upper molar (UMcusp_L) 3. Posterior cusp of upper molar
Upper Right Incisor Profile	Upper Right Incisor Profile	Define the profile of the upper right incisor using 3 points: 1. Root of upper incisor (UIroot_R) 2. Crown of upper incisor (UIcrown_R) 3. Labial point of upper incisor (UIlabial_R)
Upper Right Molar Profile	Upper Right Molar Profile	Define the profile of the upper right molar using 3 points: 1. Anterior root of upper molar (UMroot_R) 2. Anterior cusp of upper molar (UMcusp_R) 3. Posterior cusp of upper molar
Upper Soft Tissue Profile	Upper Soft Tissue Profile	Trace the profile of the upper soft tissue with a series of points (double-click or right-click to finish tracing). The upper soft tissue is defined as including the upper lip.

3DAnalysis: Save Information

Whenever the file is saved through Invivo, the .inv file saves any tracing tasks and measurements made within 3DAnalysis. The next time this .inv file is loaded, the measurements, references, etc. are all loaded from the previous session.

In addition, 3DAnalysis can save tracing data to an external file. Press the **Save Information** button to bring up the following options:

- Build Norm Data
- Export Measurements
- Export Landmarks
- Export Tracing
- Save Current Configuration As
- Load A Configuration
- Reset to Default Configuration

Build Norm Data

In the drop-down menu, choose to which norm data file to add the new measurements and press **OK**.

Ex. Select “My Caucasian” to add the measurements to the “Caucasian” norm data files (without overwriting the “Caucasian” norm data). The Analysis tab of the Text View now contains the data from the “Caucasian” norm data and the measurement data from this specific patient. The means and standard deviations are updated accordingly.

Press **Create New Norm** to create a new norm data file. When the Define Group window opens, fill in an appropriate name and description of the new norm data file and press the **User Define** button to open up the User Define Norm Data window. Browse to where the new norm data file is stored and press **Open**. Press **OK** on the Define Group window to finish and close the window. Press **OK** in the Save Information window to import the new norm data set.

Export Measurements

Select the “Export Measurements” option and press **OK** to export the current measurements of the patient. Choose the filepath and the name of the file. Press **Save**, and all the current measurements will be saved as a .csv file. If an existing .csv measurement file is selected, the data is appended to the end of the document. Using the preferred spreadsheet viewing program, the .csv file can be opened to show all measurements in a spreadsheet format for further analysis. The delimiters for columns are commas (,).

Export Landmarks

Exports the landmark names and coordinate data to a .csv file that can be opened by a spreadsheet program. The delimiters for columns are commas (,).

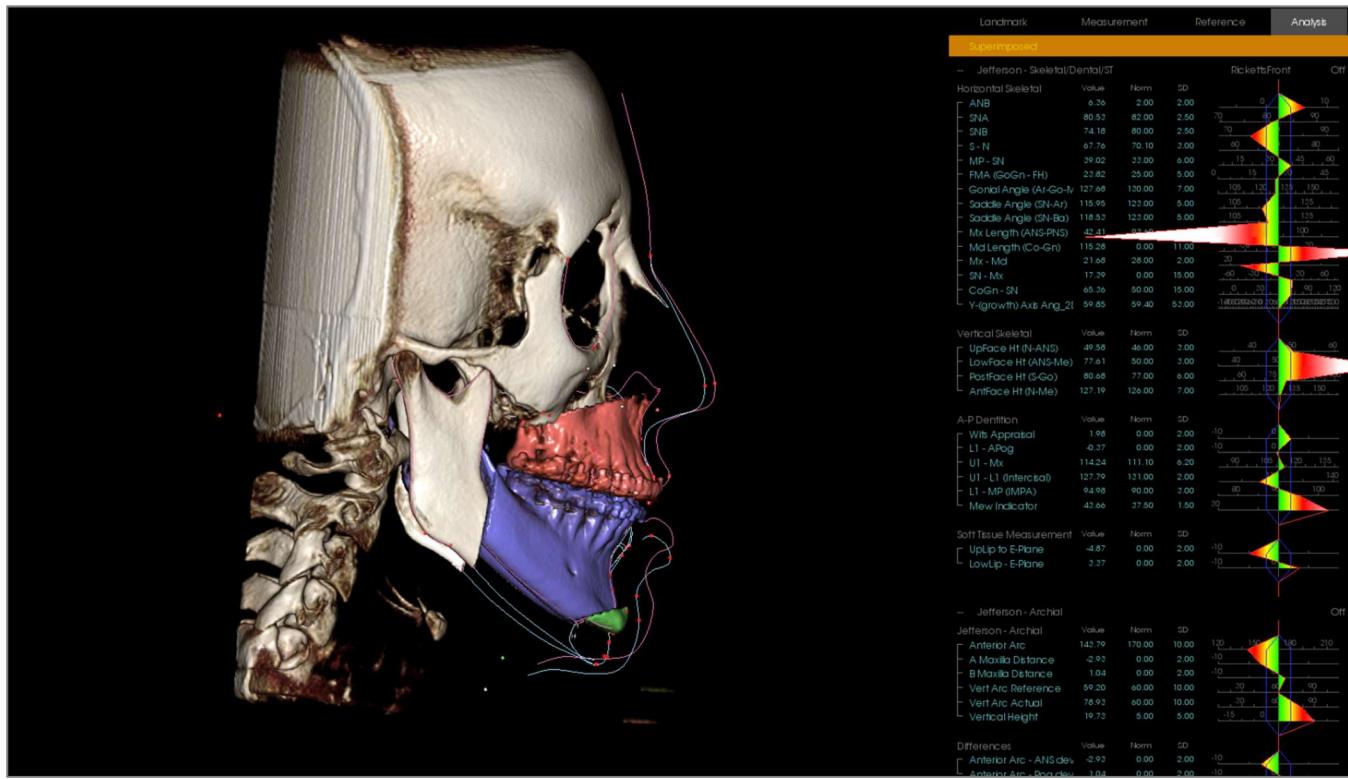
Export Tracing

Select “Save Tracing” and press **OK** to export the position of the current landmark positions and profile drawings in a customized XML format. Choose the location and name of the XML file in the Save Tracing Data window.

Save Current Configuration As

Saves the current configuration to a user-selected location. The configuration file name can be entered into either the blank box before clicking **OK** or chosen during the actual save to location process. The Current Configuration field will indicate which configuration file is currently being used.

Load a Configuration


Opens a file browser to select a configuration file to be loaded. The program will provide a warning explaining that the current configuration will be overwritten. It is recommended that the user save the current configuration as a backup before continuing with the load. The Current Configuration field will indicate which configuration file is currently being used.

Reset to Default Configuration

Resets the 3DAnalysis configuration to the installation settings.

3DAnalysis: 3D Surgery Tool

3DAnalysis allows the user to simulate surgical cuts and adjustments to better assess the surgical procedures necessary to achieve facial harmony.

Warning: 3D Surgery tool's intended use is for patient consultation and statistical analysis only. For diagnoses, use Invivo.

Certain tracing tasks must be completed before performing certain surgical cuts or visualizing soft tissue deformation.

Maxilla Cut	Mandible Cut	Soft Tissue Deformation
ANS	Menton	Upper Soft Tissue Profile
PNS	Left Gonion	Lower Soft Tissue Profile
Upper Right Incisal Crown	Right Gonion	
Upper Right Molar Cusp	Upper Right Incisal Crown	
	Upper Right Molar Cusp	
	Lower Right Incisal Crown	

Subsequent adjustment of the tracing after using the **3D Surgery** tool will undo the surgical simulations performed.

To begin, click on the **3D Surgery** tool to open the 3D Surgery window.

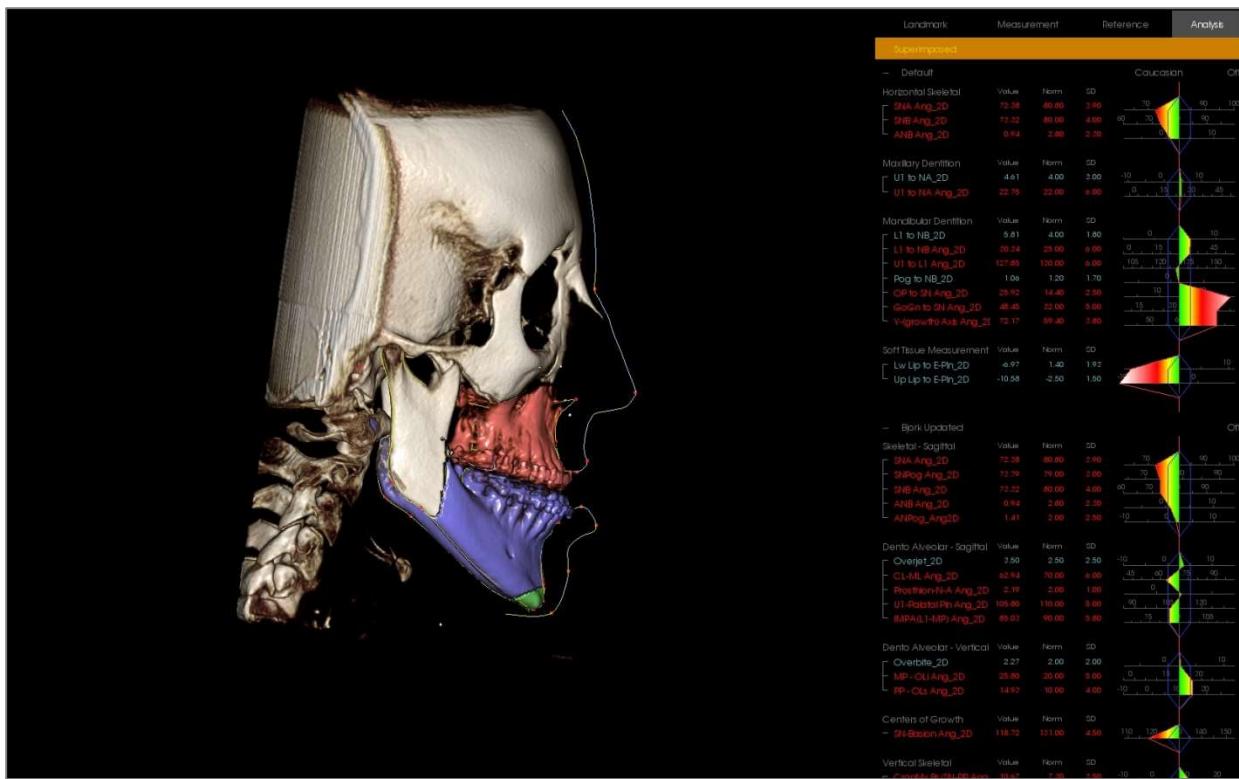
Maxilla, Mandible, Chin Cut: Automatically calculates a surgical bone cut when checked.

Adjust Cut: Adjust the size and angle of the cut by manipulating the volume of the cut. Adjusting the cut after the segment has been moved or rotated will reset its position.

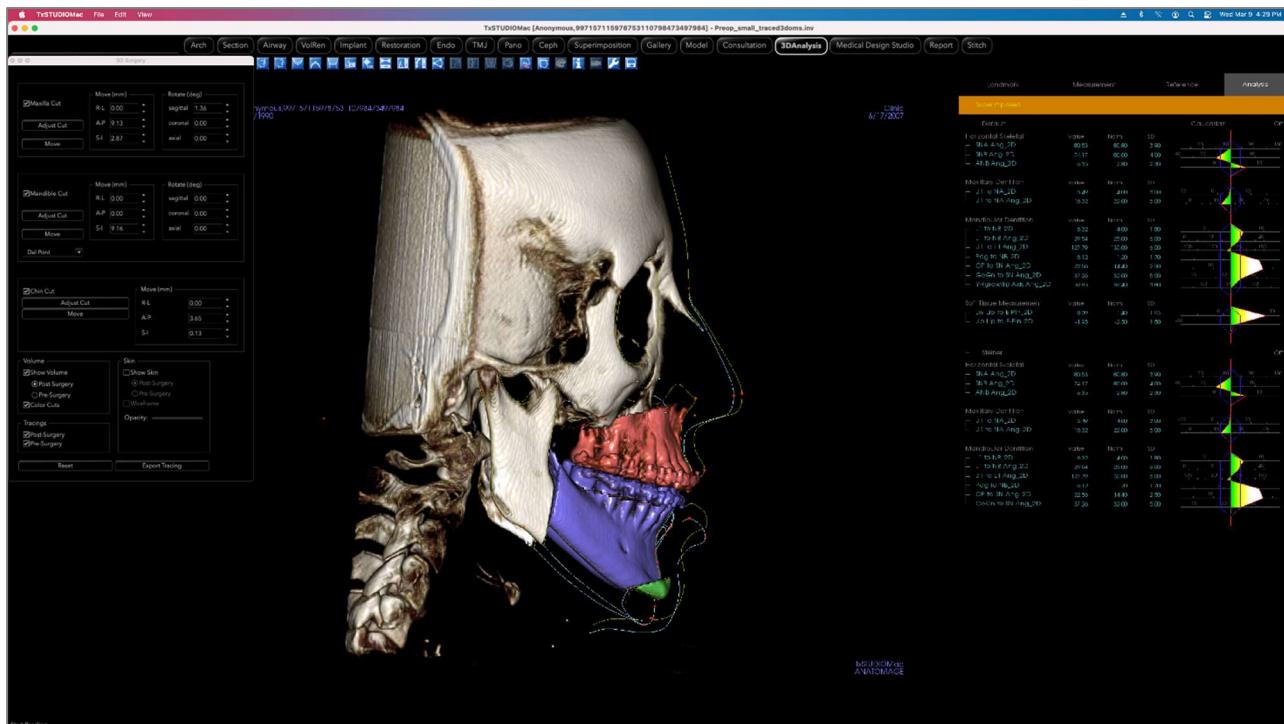
Move: Moves the bone separated by the cut either through the widget tools that appear when the button is toggled on or by inputting values in the Move and Rotate fields.

Cut Type: Choose from Dal Pont, T&O, and Hunsuck cuts for the mandible.

Volume:


- Show Volume: Toggle the volume on or off and switch between the pre- and post-surgery states.
- Color Cuts: Colors the cut volumes distinctly from the rest of the volume.

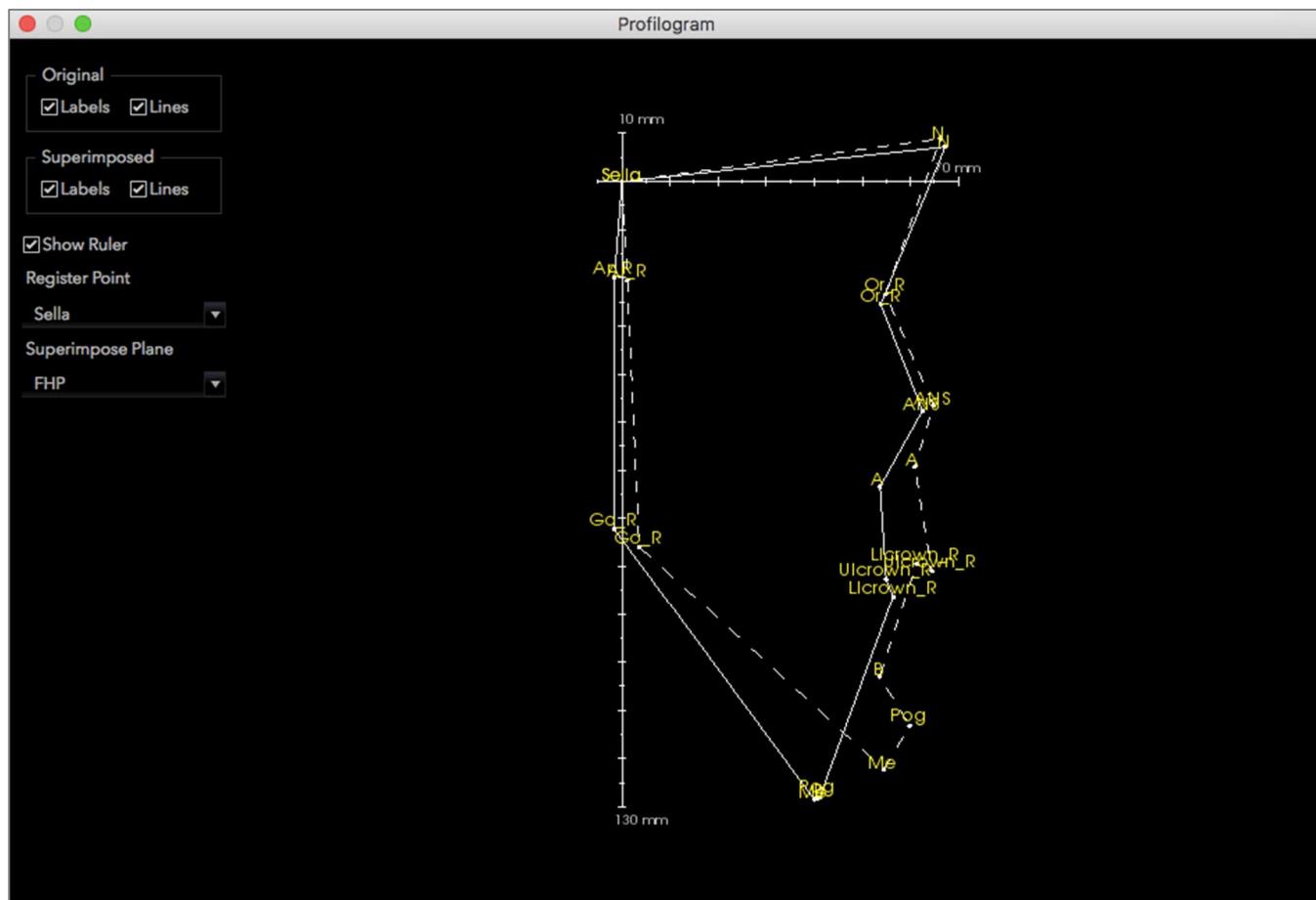
Tracings: Toggle the visibility of the pre- and post-surgery tracings.


Skin: Toggle the visibility and adjust the opacity of the pre- or post-surgery skin if applicable. The "Wireframe" option will convert the skin to a wire mesh form when selected.

Reset: Resets all move and rotate values to zero.

Export Tracing: Exports post-surgery tracing. An exported tracing can be reimported as a superimposed tracing.

By moving the widget tools or entering values directly into the window, the bone sections can be manipulated. A post-op tracing is created, reflecting the changes. Once the post-op tracing is finalized, close the 3D Surgery dialog. If Text View is selected, the data of the pre- and post-op scans can be toggled by pressing the “s” key on the keyboard or click on the “Superimposed” or “Default Tracing” header below the Text View Tabs. To export the tracing, use **Export Tracing** in the 3D Surgery dialog.

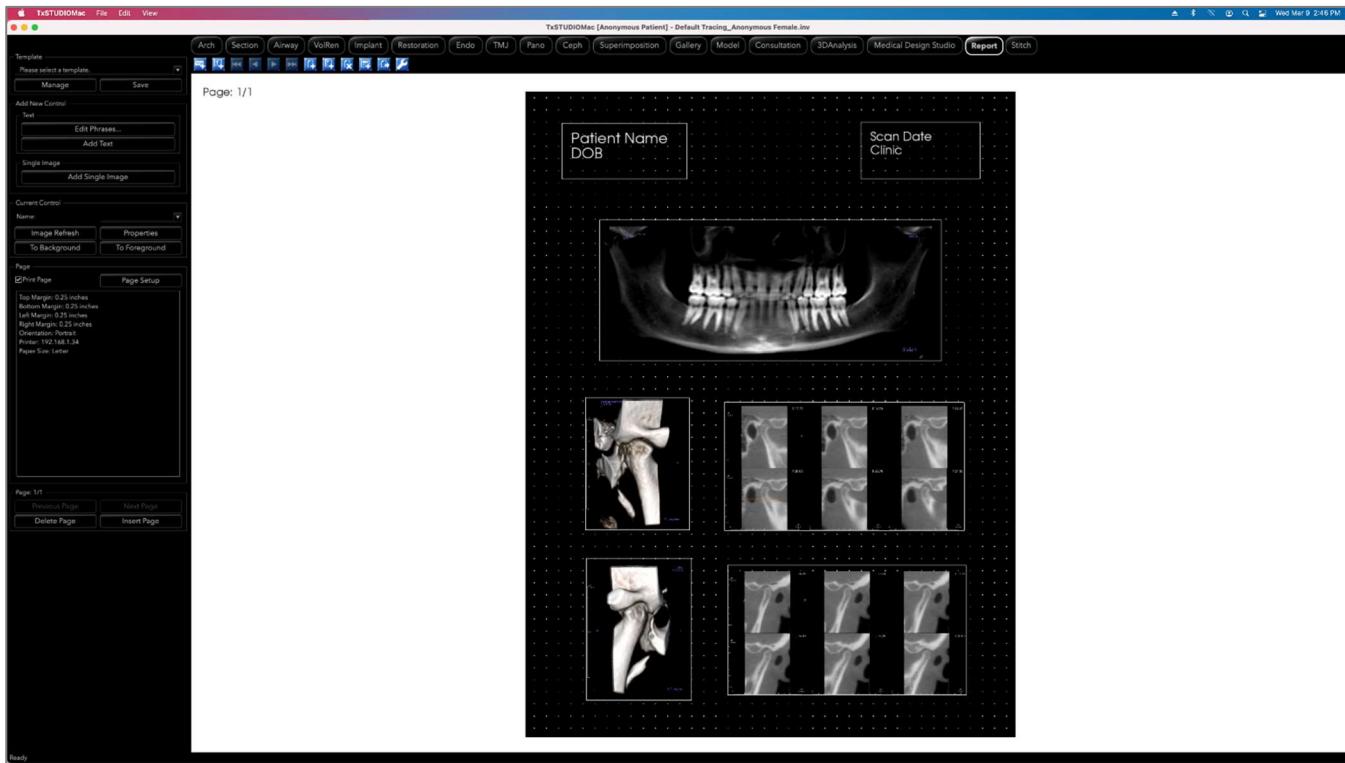


3DAnalysis: Profilogram

The profilogram is a simplified representation of the profile tracing based on a few landmarks. The required landmarks are:

Sella	Nasion
Right Orbitale	ANS
A-point	B-point
Upper Right Incisal Crown	Lower Right Incisal Crown
Pogonion	Menton
Right Gonion	Right Articulare
Right Porion	Left Porion

Once the above tasks are traced, click the **Profilogram** icon. The graphic will automatically be generated. If 3D Surgery was performed on the patient or if a tracing was superimposed, the original tracing's profilogram will be drawn with a solid line, while the superimposed tracing will be drawn with a dashed line.



Additional visibility options on the left will allow the user to hide or display labels, lines, and the ruler.

By default, the profilogram will be registered on the sella and superimposed about the Frankfort horizontal plane, but this is customizable in the Profilogram dialog.

Report Module Features

The **Report View Tab** allows for the creation of templates containing images and text. A template can be applied to any case using this tab. In this picture, the page background is black and represents the page. Several types of items can be placed within this page to create a detailed report for the patient.

Report: Toolbar

Shown below are the Toolbar and tools that are loaded with the Report View Tab:

- **Add Image:** Adds a control to add a single image.
- **Add Slices:** Adds a control to add single slices or a group of slices.
- **Add Text:** Adds a control to add text.
- **First Page:** Navigates to the first page of the report.
- **Previous Page:** Navigates one page back.
- **Next Page:** Navigates one page forward.
- **Last Page:** Navigates to the last page of the report.
- **Insert Page:** Inserts a page after the current page.
- **New Page:** Adds a page to the end of the report.
- **Remove Page:** Deletes the current page.
- **New Template:** Creates a blank template.
- **Export PDF:** Saves the report as a PDF file.
- **Preferences:** Opens preferences for default colors, default image type, default page setup, grid alignment, and the template save path.

Report: Control Panel

Template

- **Template drop-down:** Lists the available templates.
- **Manage:** Displays all of the preset templates. Templates can also be loaded, renamed, and removed in this dialog. See pg. 217.
- **Save:** Saves the current template. Templates are stored locally and show up on the drop-down.

Add New Control

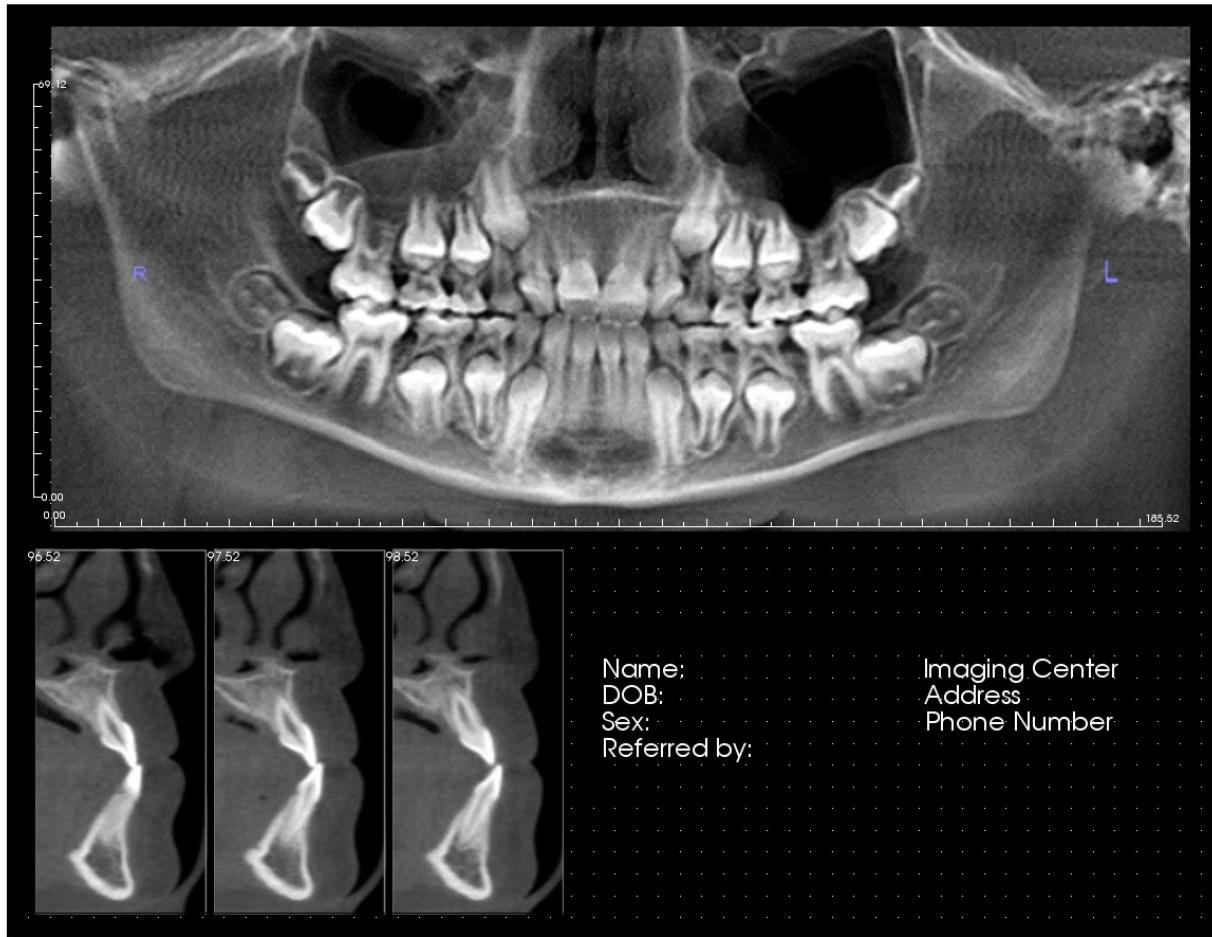
Text:

- **Edit Phrases...:** Opens a dialog for managing common phrases to be added to text controls. See pg. 213.
- **Add Text:** Adds a control for text.

Single Image:

- **Add Single Image:** Adds a control for one image.

Current Control


- **Name drop-down:** Shows the name of the currently selected control from a list of controls on this page. Each control can be selected from the drop-down menu instead of clicking the control.
- **Image Refresh:** Updates the image according to the changes in the source image.
- **Properties:** Opens the Properties window for the current control.
- **To Background:** Puts the selected image behind other images.
- **To Foreground:** Puts the selected image in front of other images.

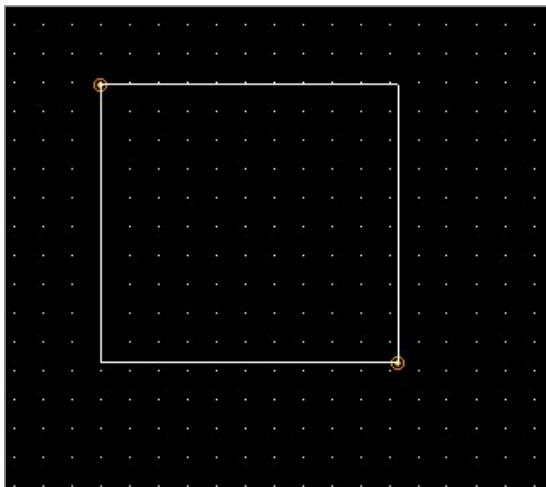
Page Control

- **Print Page:** Enables the current page to be printed.
- **Page Setup:** Opens page setup for setting printer, paper size, margins, and background/border properties of the page.
- Page Information is displayed showing the current settings.
- **Previous/Next Page:** Page navigation controls.
- **Delete Page:** Removes the current page.
- **Insert Page:** Inserts a page after the current page.

Report: Rendering Window

Page: 2/2

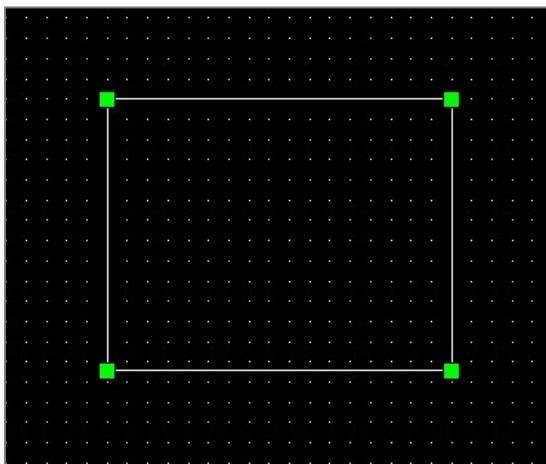
The rendering window displays the report page and is the main area for designing and viewing reports and templates. The page navigation buttons in the toolbar allow the user to switch between pages in a multi-page report to choose which is displayed in the rendering window.


Adjusting the position and zoom of the report within the rendering window uses the same keyboard and mouse combinations as in other Invivo tabs:

Zoom – ⌘ + Left-Click + Drag Mouse

Pan – Shift + Left-Click + Drag Mouse

Report: Controls


Controls are boxes that display text or image data.

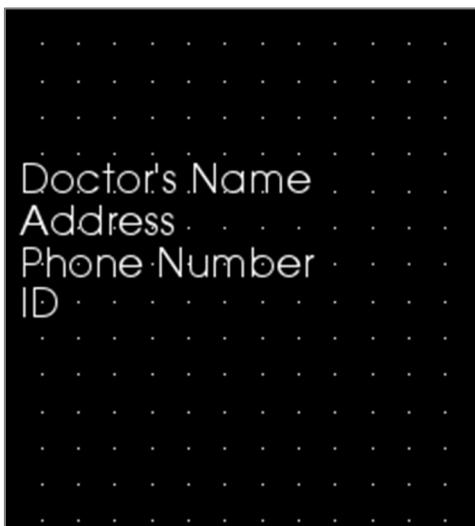
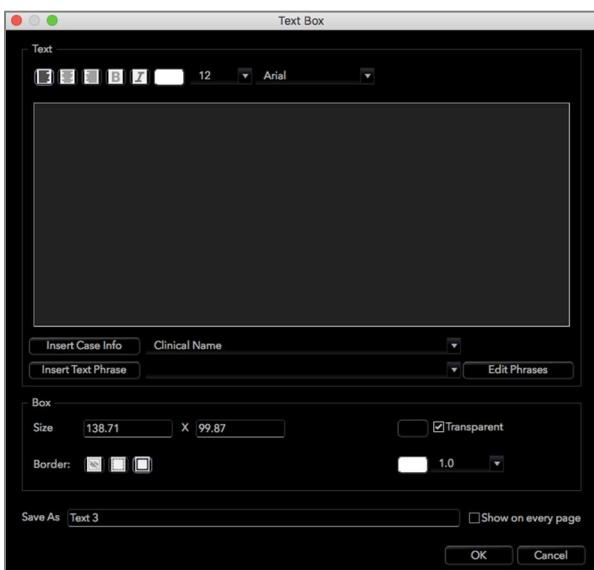
Adding and Sizing

- Navigate the mouse cursor to the Control Panel on the left and select the button labeled **Add Text**, **Add Slice Group**, or **Add Single Image**.
- **Size the control:** The image on the left shows the control rectangle during creation. The control is created by two separate points and will not show up until after the first point has been placed.

 Warning: If the control is created outside of the page borders, an error message is displayed, and the control is not created.

Resizing and Customization

- After creating the control, it will look like the image on the left.
- **Resize the control:** Click and drag the green squares or the borders. Alternatively, set the height and width from the Properties window.
- **Move the control:** Click and drag with the left mouse button or use the arrow keys on the keyboard after clicking inside the control.
- **Select a control:** Click on the control or select it from the **Name** drop-down on the Control Panel. Pressing the “fn” + “delete” keys will delete the control. To see the control's properties, press the **Properties** button while it is selected. Double-clicking the control also shows its properties.
- **Select multiple controls:** Click more than one control while holding the “⌘” key on the keyboard. Supported multi-control operations are movement and deletion.
- **Copy and paste controls:** Select a control, press ⌘ + C, then press ⌘ + V to paste it at another location.

Report: Adding Text Controls

Text Controls contain text that is manually typed in or drawn from the Case Info.

Adding a Text Control:

- Click the **Add Text** button.
- Properties can be changed by clicking **Properties** in the Current Control section of the Control Panel.

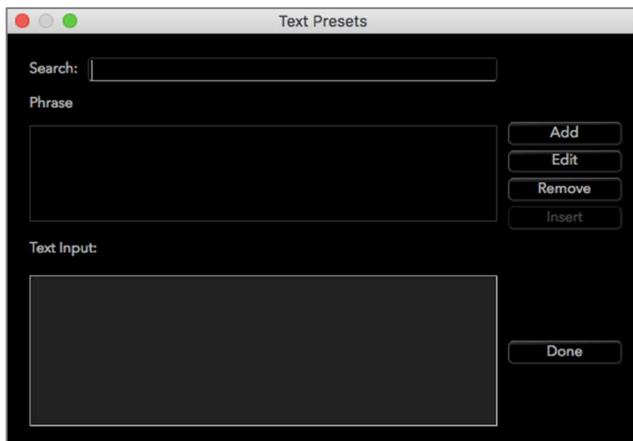
Text Box Dialog

This dialog can be opened by double-clicking on a text control or selecting the control and clicking **Properties** on the Control Panel.

Text

- Alignment type: Select the text alignment type.
- Font Options: Family, size, color, alignment, bold, and italics can be changed.
- Text Input Box: Enter text to be displayed in this text box.
- **Insert Case Info:** Inserts the selected data based on the case information or Gallery comments where the cursor is in the Text Input Box.
- **Insert Text Phrase:** Inserts the selected text phrase where the cursor is in the Text Input Box.
- **Edit Phrases:** Opens the Text Phrases dialog (See pg. 213).

Box


- Size and color: Determines the size of the text control. Unchecking “Transparent” will show the chosen color instead of the report’s background color.
- Border: Set the border style, color, and thickness. Style can be dashed, solid, or none (not displayed).

Save As

- Choose the name of the control.

Show on Every Page

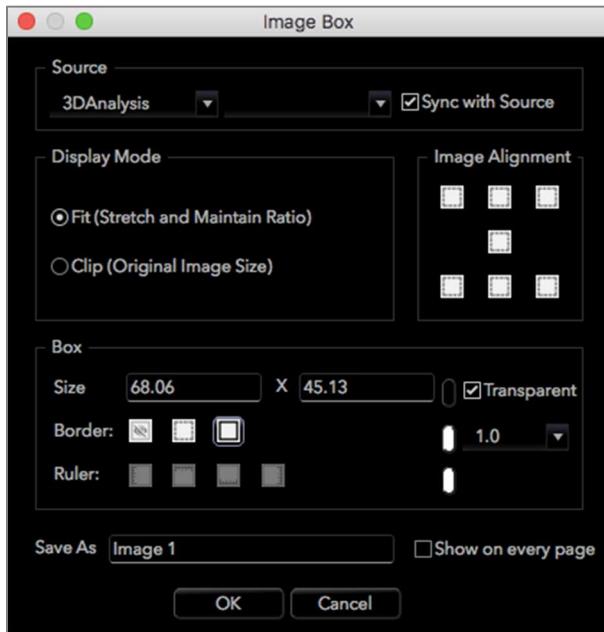
- Check this option to show the text in the control on every page of the template.

Text Phrases

Text phrases store common phrases within the software to be inserted into text controls. This dialog can be opened by click on **Edit Phrases**.

Phrases.

- **Search:** Searches for the term in the list of stored phrases.
- **Add:** Opens a dialog for creating a new phrase.
- **Edit:** Opens a dialog for editing the selected phrase.
- **Remove:** Removes the selected phrase.
- **Insert:** Inserts the selected phrase into the text control.
- **Text Input:** If a text control is selected, type directly into the box to update the text control on the report.


Report: Adding Single Image Controls

Control that holds a single image from a selected source view.

Adding a Single Image Control:

- Click the **Add Single Image** button.
- Properties can be changed by clicking **Properties** in the Current Control section of the Control Panel.

Single Image Box Properties

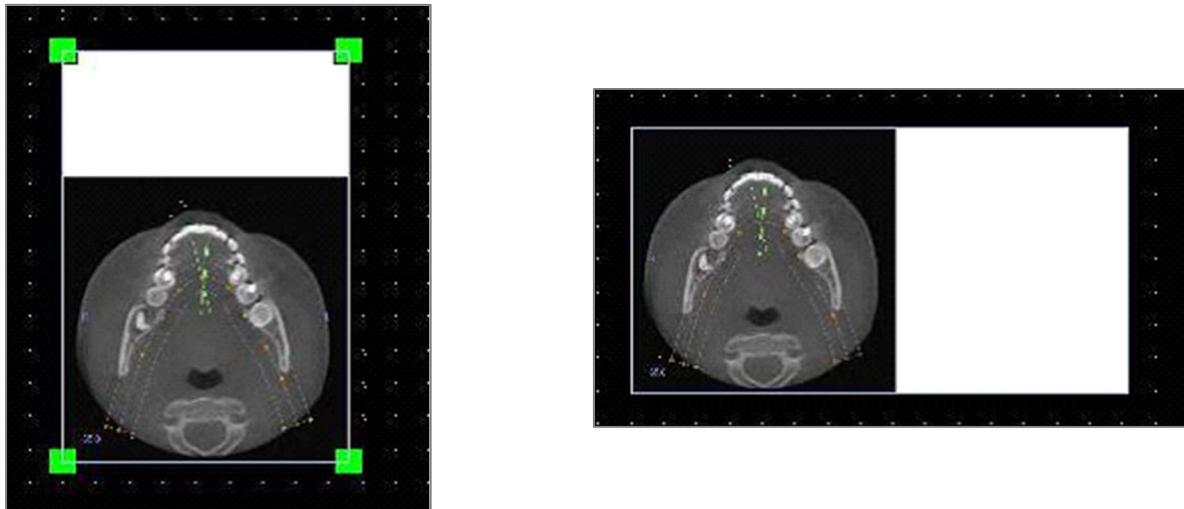
Source

- Determines the exact image to be displayed from the source view (Note: Images will not be available until the specified source view has been “visited” to provide an image to load. **See Report: Image Type Definitions**, pg. 216, for details on dynamic images.)

Sync with Source, Display Mode, Image Alignment, Box dimensions and properties, Save As, and “Show on Every Page” control the same properties as for Slice Groups (see **Report: Adding Slice Group Controls**, pg. 214).

Warning: Bitmaps under 24 bit may not display correctly.

Report: Image Alignment


For Slice Group Controls and Image Controls, images may be aligned to the control boundaries by two methods.

- Fit: Resizes the image to fit within the borders of the control as determined by the Image Alignment settings.

This example is done with a bottom left fit alignment position with a white background.

The image will originate from the bottom left and will show the background above it or to the right when it does not fill the control.

- Clip: The original image size is maintained. The control may need to be resized in order to display the full image.

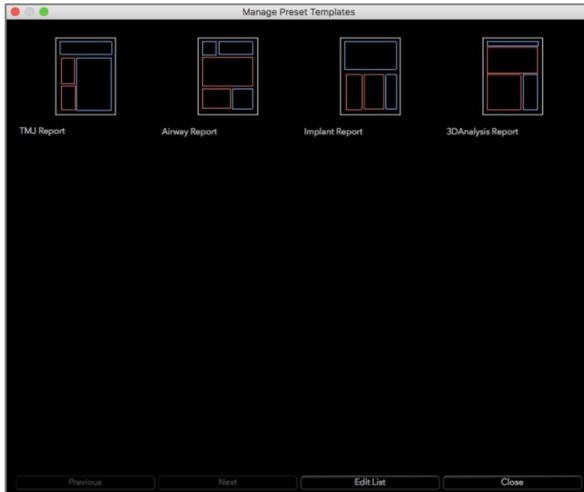
Report: Image Type Definitions

Dynamic Images:

These images can always be up-to-date with the latest changes performed on them if desired. When adding an image to a control, the user can choose not to auto-update the image, keeping the current image until the auto-update setting is changed or the image is manually refreshed. There are two types of dynamic images.

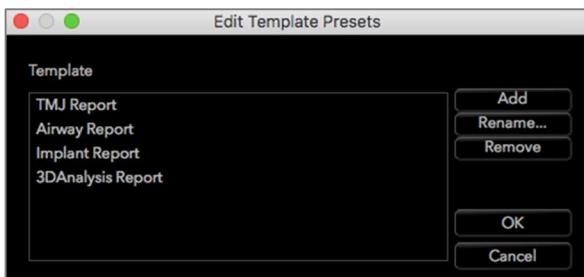
Note: Capturing images from specific layouts requires that the layout is currently selected when leaving the aforementioned view tab and reloading the Report Tab. Ex. The pano screen in the Implant Tab will not be captured unless the Pano layout is on when leaving the view.

- Single image view sources except Gallery and external images are dynamic.
 - To populate the image source with images, go to a view tab. After leaving the view, images for that view are captured.
 - After an image has been added to a control, it will update when changes are made in that view. For example, if a measurement is added to Section Tab's axial view, the image in the Report Tab will now display that measurement.
 - These images are saved with the case file.


Static Images:

These images never change without manually change the source image. There are two sources of static images.

- Gallery
 - All images in the Gallery are either captured from other tabs or imported by using the **Import Images** function. They will not always be life size.
 - These images are saved with the case file.
- From a File
 - These images come from the local computer or another source. They will never be life size.
 - These images are saved with the template.
 - If an image that already exists in the template is added, the software will prompt whether to replace the image or keep using the older one.


Report: Managing Templates

Once a report layout is created, it can be saved and reloaded in other cases as a template. Templates are saved locally in the file path designated under “Template Path” in the Preferences dialog. These saved templates will automatically appear in the drop-down menu. To display a preview of all the available templates or to edit them, click on **Manage...** on the Control Panel.

Manage Preset Templates

- All of the saved templates will be shown here.
- Each color represents a different type of control:
 - Blue: Text control
 - Red: Image control
 - Yellow: Slice group control
- Templates may also be loaded from this window by left-clicking on them.
- **Previous/Next:** Goes to the previous or next page of templates, respectively.
- **Edit List:** Opens a dialog for editing template properties.
- **Close:** Closes the dialog.

Edit Template Presets

- **Add...:** Load an existing template that was saved elsewhere.
- **Rename...:** Rename the selected template.
- **Remove:** Remove the selected template.

Report: Preferences

Alignment Grid:

- Grid dot spacing: Defines the distance between grid dots.
- Grid dot color: Set the color of the grid dots.
- Hide Grid: Toggles the visibility of the grid.

Default Control Colors: Colors for border, background, font, and rulers.

Default Image Type: Choose between “Fit” or “Clip” display modes.

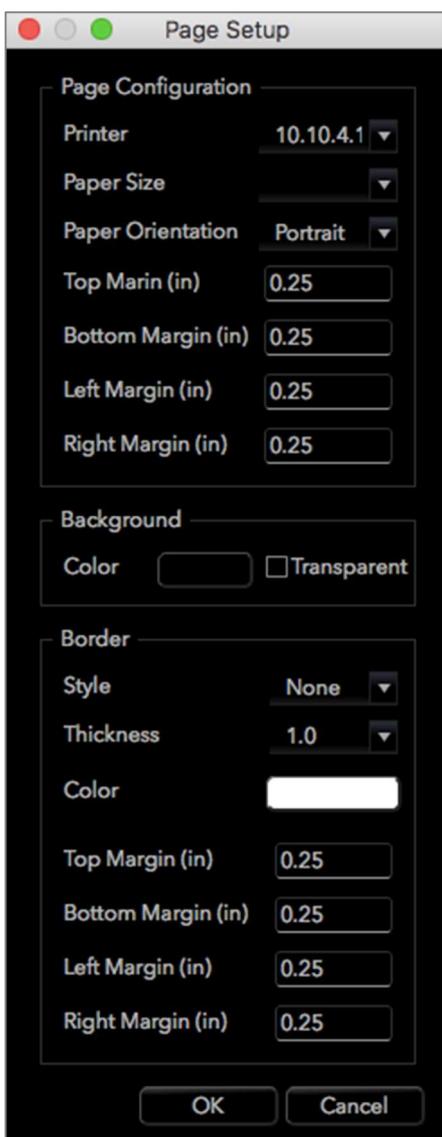
Default Page Setup:

- Printer: Printer in current use. This changes the available paper sizes. This list includes all of the printers available to the computer.
- Paper Size: Uses the printer drivers to set the height and width of the page.
- Orientation: Portrait or landscape setup.
- Margins: Margins (in inches) for the template. Used for where controls can be placed.
- Background: Color and transparent options.
- Border: Color, thickness, and style options for the border. Styles are solid line, dotted line, or no line at all.
- Margins: Margins for the border. This can differ from the page margins.

Behavior: Specifies behavior of the template during design.

- Enable Alignment Grid: If checked, all controls will attach to their top left corner to the nearest grid point. If unchecked, they will be placed wherever the user drags them.
- Display Numbers on Print: If checked, the report page number will be displayed in the printout.

Report: Page Setup


This displays and allows configuration of the page settings. These are the settings the template uses. When printing, the correct printer and paper size must be chosen from the print setup.

Note: The first time the software loads, the default printer configuration is used to set the printer and paper size for the report. Report defaults can be changed from the Preferences menu.

Page Setup:

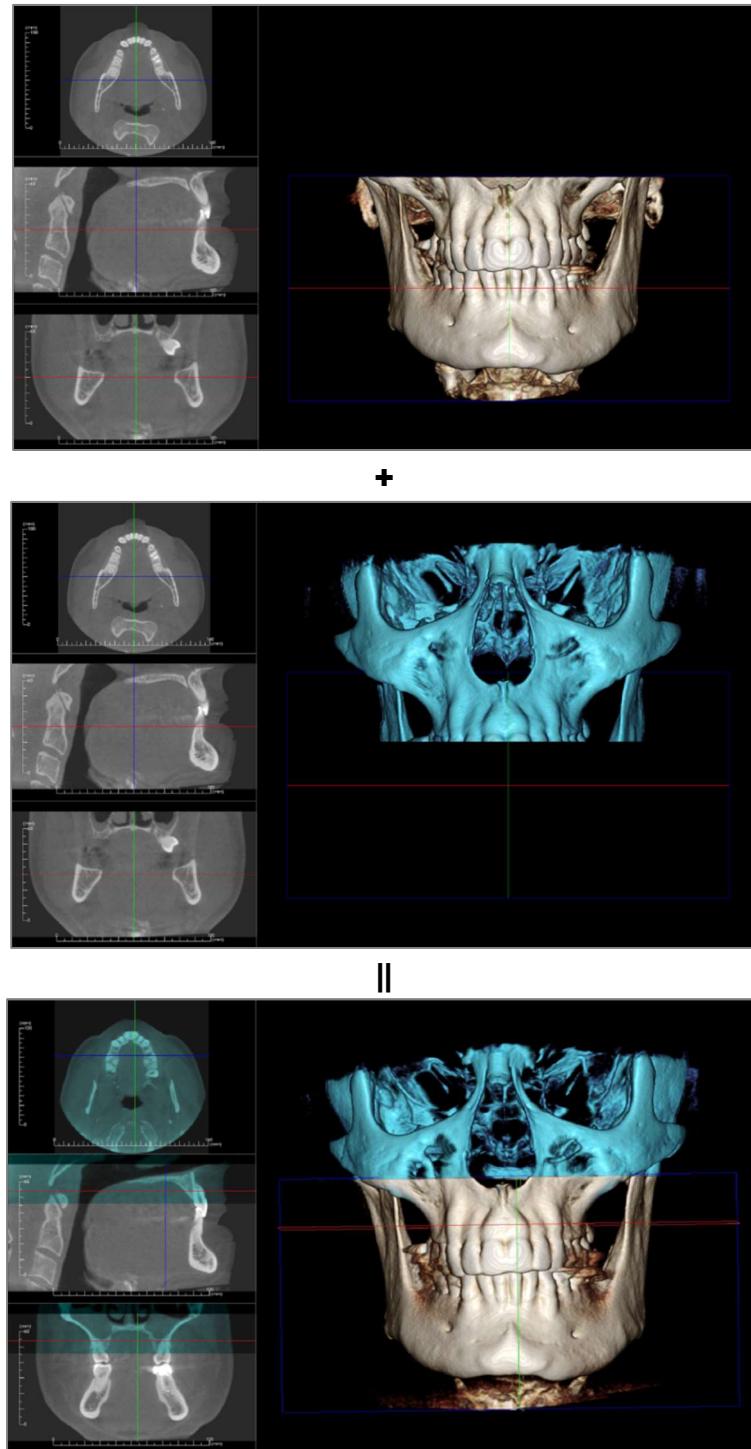
To modify page settings, click the **Page Setup** button in the Control Panel.

Page Configuration:

- **Printer:** Printer to use for this template.
- **Paper Size:** Current paper size. Only displays paper sizes for the currently selected printer.
- **Paper Orientation:** Portrait or landscape orientation. (Note: Margins will not change, so paper may appear to have different proportions when switching between portrait and landscape.)
- **Margins:** Margins (in inches) for the page.

Background:

- Checking transparent will show the chosen color instead of the background.


Border:

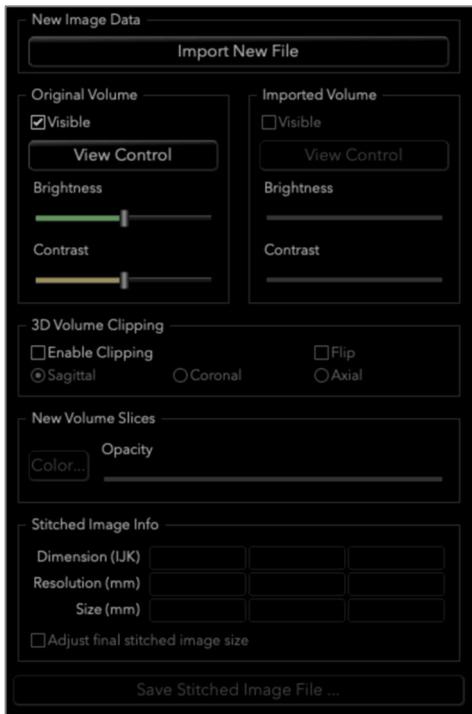
- Set the border color, thickness, and style.
- Style can be dashed, solid, or none (not displayed).
- **Margins:** Location of the borders.

Page information of the chosen configuration will always be displayed in the Page section of the Control Panel.

Stitching Module Features

The **Stitching View Tab** provides the ability to merge two DICOM data sets. This provides the ability to utilize CBCT machines with smaller fields of view fully.

Warning: Stitching module is not a medical device and should be used as a reference or presentation tool only.


Stitching: Toolbar

Shown below are the Toolbar and tools that are loaded with the Stitching View Tab:

- **Reset:** Resets the rendering window to the original view size.
- **Left:** Automatically orients the volume so the patient is facing left sagittal.
- **¾ Left:** Automatically orients the volume so the patient is facing 45° left sagittal.
- **Front:** Automatically orients the volume so the patient is facing the front.
- **¾ Right:** Automatically orients the volume so the patient is facing 45° right sagittal.
- **Right:** Automatically orients the volume so the patient is facing right sagittal.
- **Top:** Automatically orients the volume in a top-down view.
- **Bottom:** Automatically orients the volume in a bottom-up view.
- **Back:** Automatically orients the volume to the posterior view.
- **Layout:** Toggles the rendering window layout.
- **Grid:** Toggles between two different grid layouts for use in the upper two section frames allowing quick assessment of measurements and spatial location.
- **Point Registration:** This tool is used to register the original volume to the imported volume. Four or more anatomical points are chosen from each scan to properly align them.
- **Adjust:** This tool is used to make adjustments to align the two volumes better.
- **Information Display:** Displays or hides case information embedded in the data.

Stitching: Control Panel

Import New File: Import the second volume by opening an invivo (.inv) or DICOM (.dcm).

Original Volume and Imported Volume: Different viewing options, such as visibility, rendering type, brightness, and contrast for each volume can be selected or adjusted independently.

3D Volume Clipping: Click the “Enable Clipping” box to clip the image along the predefined anatomical planes (sagittal, axial, coronal, and arch). Scrolling the mouse wheel or moving the slider will move the clipping plane. To switch a view to the opposite side, click “Flip.”

New Volume Slices: The Opacity slider adjusts the opacity of the superimposed volume. The **Color** button changes the color of the superimposed volume.

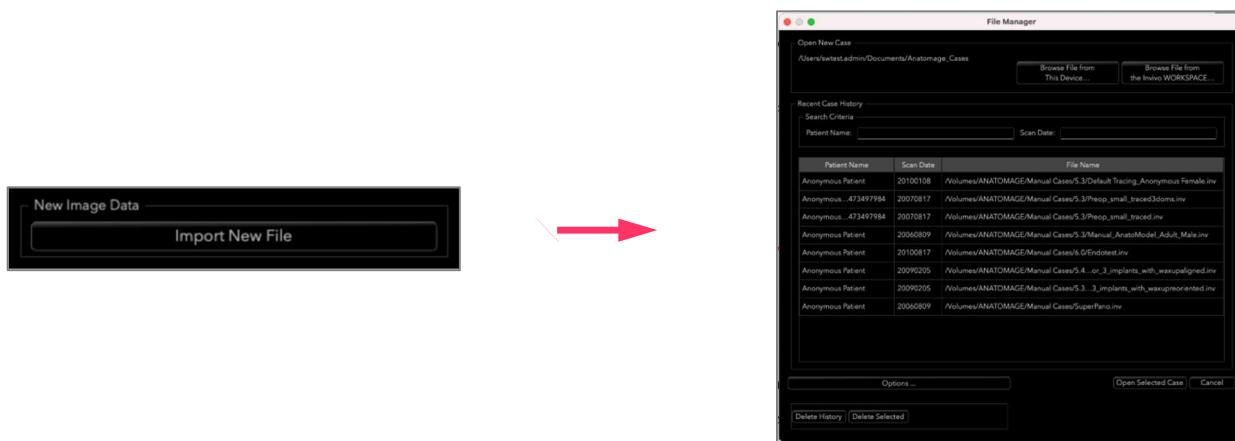
Adjust Final Stitched Image Size: This feature sets new boundaries for the stitched scans. If the stitched volume does not fit into the window or is off centered, this feature can be used to adjust the boundaries.

Save Stitched Image File: This button will save the stitched volumes into an invivo file. Upon saving, the two volumes will be merged and open as a regular Invivo file.

Stitching: How to Stitch Two Volumes

Invivo provides an easy-to-use tool that combines two volumes to create a larger field-of-view scan. Although it is easy to use, it is a technique-sensitive feature with the most critical step being the registration of the scans by selecting stable landmarks. The next section shows how to stitch two scans step by step.

Step 1. Save DICOM Files as Invivo Files.


Both scans are recommended to be saved as Invivo files (.inv) before proceeding. See the section on Invivo File Saving for saving DICOM files as Invivo files.

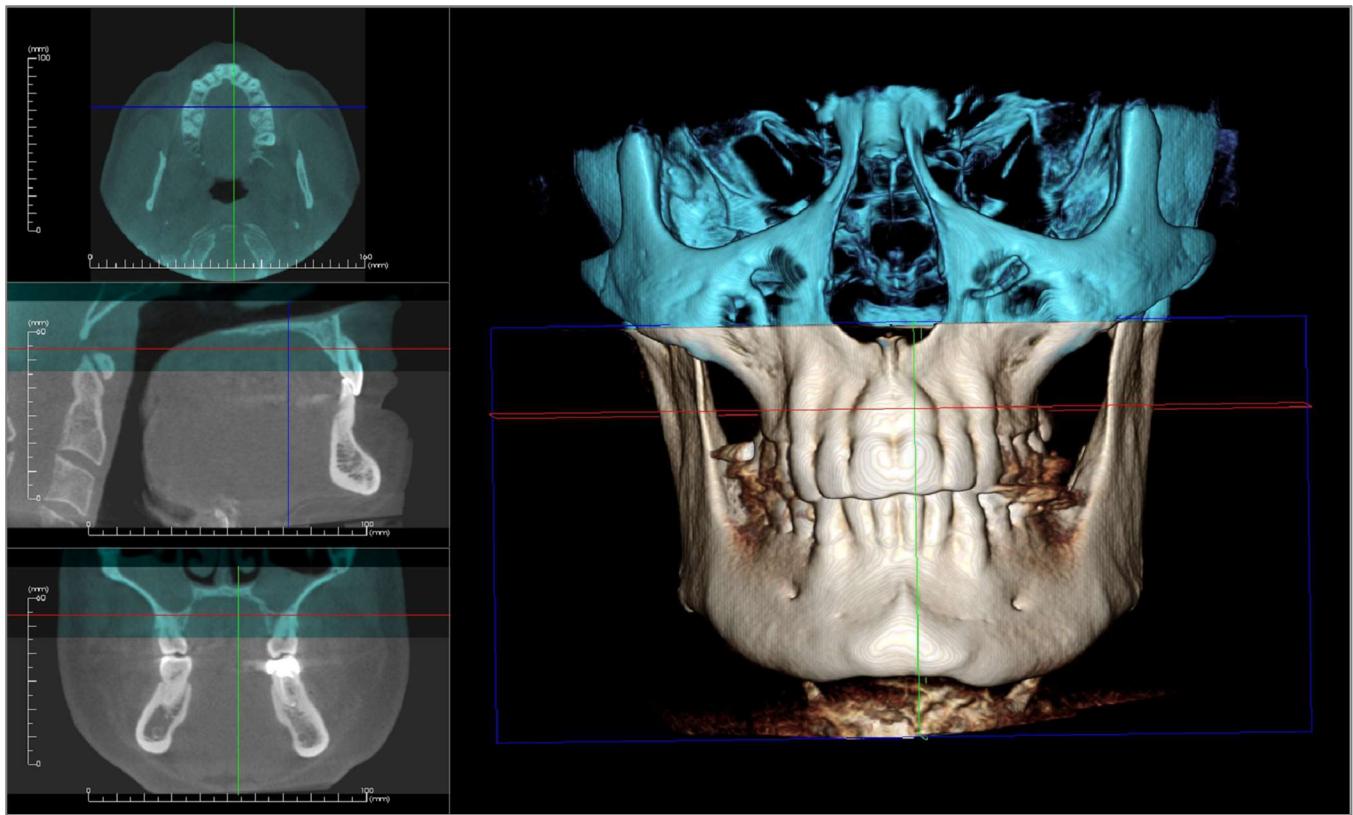
Step 2. Open the First Invivo File.

Open the first Invivo file. The cases do not need to be opened in a specific order.

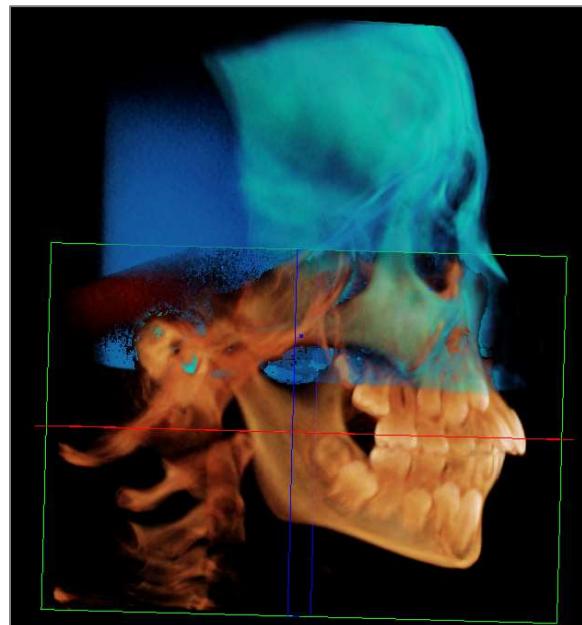

Step 3. Import Volume.

Go to the Stitching Tab. Click on the **Import New File** button on the Control Panel to select the second scan:

Step 4. Registering the Two Scans to Each Other.

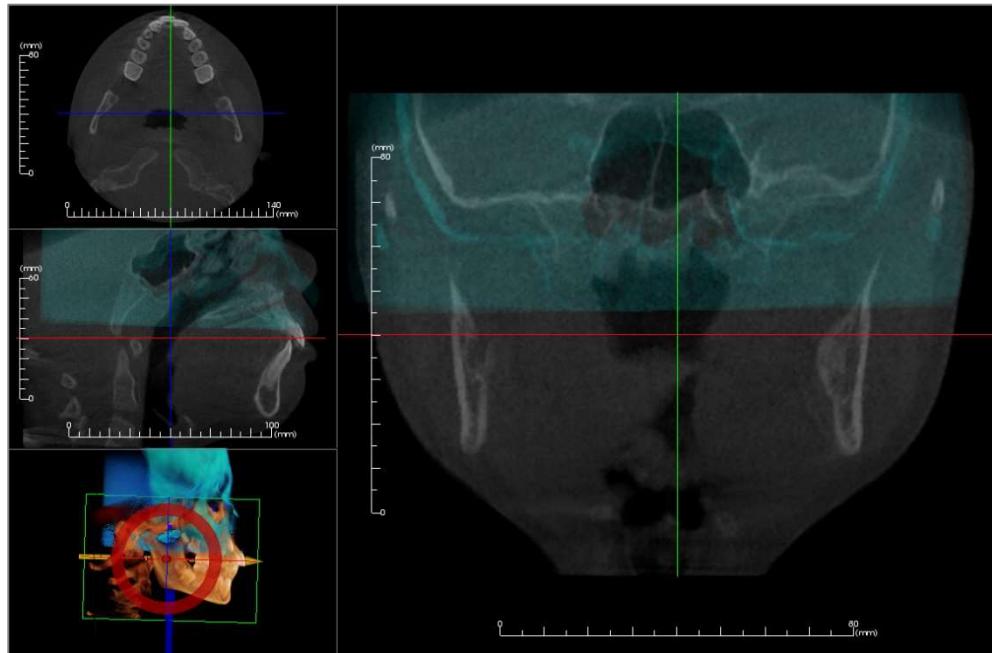

In order to stitch the scans correctly, strict attention must be exercised in selecting at least four matching and stable landmarks in both scans. Use the **Point Registration** function:

Select the first landmark on one scan, and then select the exact matching landmark on the other scan. The landmarks are selected by pressing the center scroll wheel of the mouse or by the space bar on the keyboard. Each point shows up as blue or red pixels (above). The image can be rotated with the mouse as usual.


Because the points are plotted on the volume, careful attention must be taken so that the brightness is not too high; otherwise, the point could be offset from the point intended. Clipping the scan may make the selection of the exact point easier and potentially more precise.

Once at least four points are plotted and matched, click the right mouse button to register the two scans.

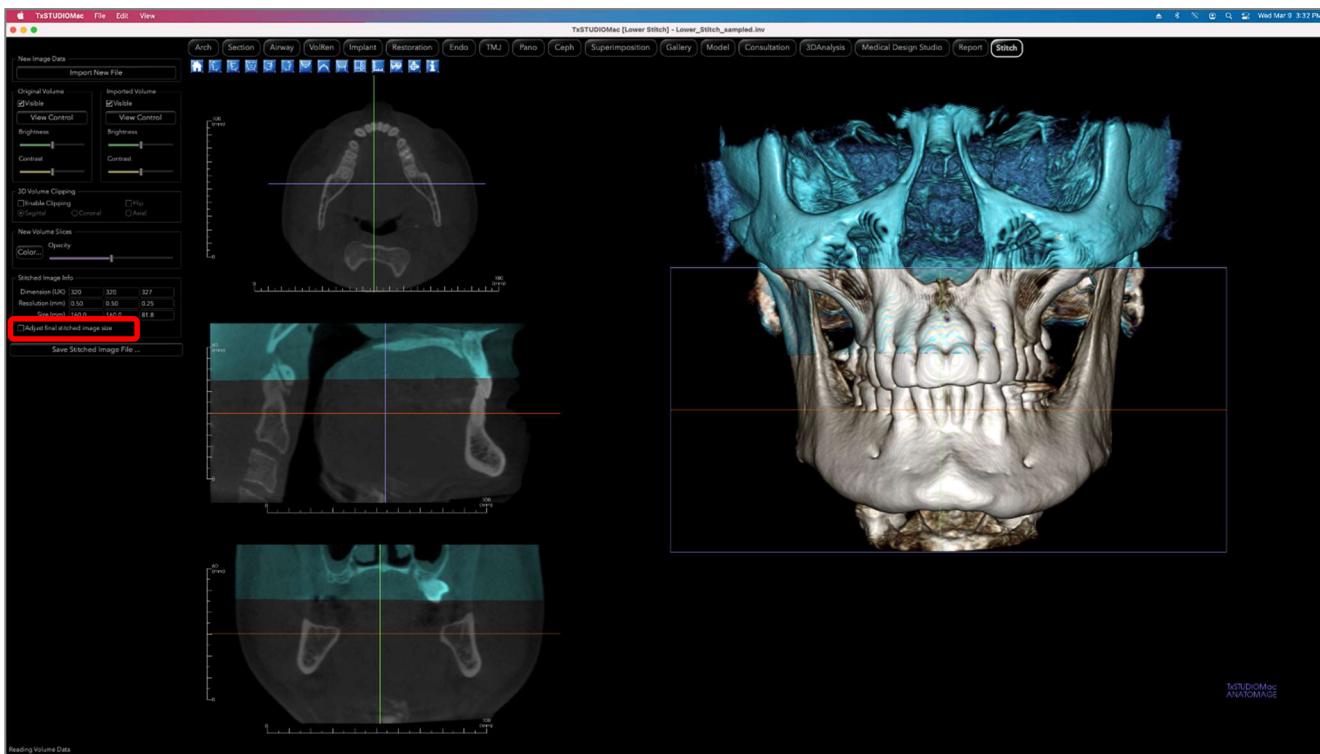
The above image is of an upper and a lower field of view. The blue outline from the second scan closely overlaps the original bone-colored scan in the shared region.


The following image is of two volumes imprecisely registered. The blue and orange skeletal boundaries do not line up, leading to the presence of double images:

Step 5. Making Adjustments for Precision.

The next step is to check the cross sections for accuracy and make the necessary adjustments. The stitching is shown in 3D as well as in the cross sections.

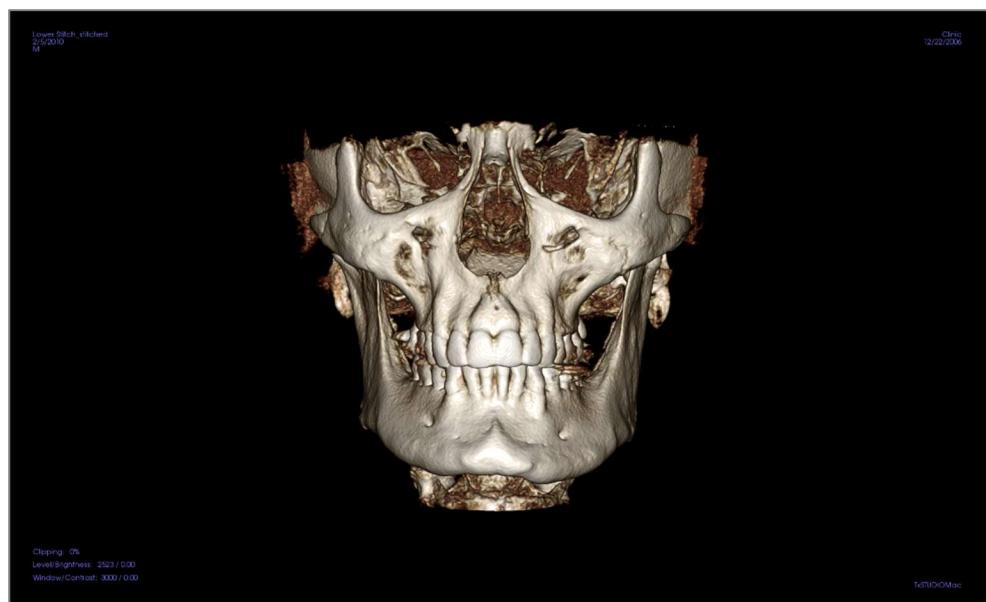
To enlarge the cross sections, use the **Layout** icon on the toolbar:



If the stitch is not completely precise in one of the sections, the volume or the cross sections can be moved for better alignment using the **Adjust** tool:

Each anatomical plane should be checked for precision. The cranial base should match up perfectly because it is stable; however the vertebrae may not because the patient's head is usually tilted differently in each scan.

Step 6. Saving Final Stitched Scan


Use the “Adjust Final Stitched Image Size” tool to set the boundaries by dragging the white handles of the bounding box. Make sure the entire volume range is included.

When the bounding box has been adjusted to the size desired, turn off the “Adjust Final Stitched Image Size” function and click the **Save Stitched Image File** button on the bottom left.

Save Stitched Image File ...

This will save an Invivo file (.inv) with the two scans together as one.

Invivo6 Software Troubleshooting

Category	Error	Solution
General	Error Message: <i>TxSTUDIO Application has encountered a problem and needs to close. We are sorry for the inconvenience.</i>	Click the “Don’t Send” button. Check if there are old versions of optional plug-ins: remove them or upgrade them to be compatible with TxSTUDIO. Launch the TxSTUDIO application again. Warning: Treatment information can only be manually saved. All information added after last saving will be lost.
	Cannot launch TxSTUDIO	Close other TxSTUDIO processes. Launch the TxSTUDIO application again.
	Computer failure	Launch the TxSTUDIO application again. Warning: Treatment information can only be manually saved. All information added after last saving will be lost.
Installation	Error Message: <i>Server is not Responding</i>	Check Internet connection. If Internet is connected, try again later.
	Error Message: <i>Failed to verify the license code!</i>	Check the license code and try again. Check Internet connection and try again.
	Error Message: <i>Wrong License Code!</i>	Check the license code and try again.
	Error Message: <i>Invalid Authorization code</i>	Check the license code and try again.
	Error Message: <i>Actual size of the image can't fit to the paper size!</i>	Change printer setting or create an image with smaller size.
File Operations	Error Message: <i>Failed to create process. Please close other applications and try again.</i>	Close all the other applications. Launch the TxSTUDIO application again.
	Error Message: <i>Error: Cannot read this file</i>	Check if this file is supported by TxSTUDIO.
	Message: <i>Not enough memory</i>	Close all the other applications. Launch the TxSTUDIO application again.
	Error Message: <i>Can't create temporary save file!</i>	Check if the remaining disk capacity for the temporary folder is big enough.
	Error Message: <i>Failed to read DICOM file!</i>	Check if this file is supported by TxSTUDIO.
	Error Message: <i>Can't read Dicom's Image Data!</i>	Check if this file is supported by TxSTUDIO.
	Try to open a file but nothing showing up	Check if this file is supported by TxSTUDIO.
	Error Message: <i>Cannot save file!</i>	Check if the file is the correct type. Check if the file path is correct and folder is writable.
Image Rendering	Error Message: <i>Can't detect hardware acceleration for OpenGL support!</i>	Check if the graphics card meets system requirements. Check if the latest driver is installed for the graphics card.
	Image is distorted	Switch to another view and switch back.
	Grayscale image shows up for all rendering presets	Check if the graphics card meets system requirements.

		Check if the latest driver is installed for the graphics card.
	Warning Message: <i>3D reconstruction may not work!</i>	Check if the DICOM files are exported correctly.

For all other issues, please contact Osteoid, Inc. Customer Support at (408) 333-3484.

Keyboard Shortcuts

The following keyboard shortcuts are available:

	Hotkey	Description
Section	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	⌘ + C/⌘ + V	Copy/Paste the selected notation
	Fn + Delete	Deletes the selected notation/measurement
Volume Render	0	Changes to Gray Scale rendering
	1	Changes to Inverse rendering
	2	Changes to Soft Tissue 1 rendering
	3	Changes to Soft Tissue 2 rendering
	4	Changes to Soft Tissue+Bone rendering
	5	Changes to Soft Tissue+Teeth rendering
	6	Changes to Bone rendering
	7	Changes to Teeth rendering
	8	Changes to Custom rendering
	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped

	Q	Enables Freehand Volume Sculpting tool
	W	Enables Polygon Sculpture tool
	Fn + Delete	Deletes the selected measurement/notation/airway
ArchSection	⌘ + C/⌘ + V	Copy/Paste the selected notation
	Up Arrow/Down Arrow	Scrolls through selected slice
	Fn + Delete	Deletes the selected measurement/notation/nerve
Super Pano	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	0	Changes to Gray Scale rendering
	1	Changes to Enhanced Gray rendering
	2	Changes to Soft Tissue+Teeth rendering
	3	Changes to Soft Tissue+Bone rendering
	4	Changes to Composite 1 rendering
	5	Changes to Composite 2 rendering
	6	Changes to Bone 1 rendering
	7	Changes to Bone 2 rendering
	8	Changes to Teeth 1 rendering
	9	Changes to Teeth 2 rendering
	Fn + Delete	Deletes the selected measurement
Super Ceph	0	Changes to X-ray rendering

	1	Changes to X-ray + soft tissue rendering
	2	Changes to Bone Preset 1 rendering
	3	Changes to Bone Preset 2 rendering
	4	Changes to Bone Preset 3 rendering
	5	Changes to Soft+Bone 1 rendering
	6	Changes to Soft+Bone 2 rendering
	7	Changes to MIP rendering
	Fn + Delete	Deletes the selected measurement
Implant	0	Changes to Volume preset
	1	Changes to Implant preset
	2	Changes to Stone Models preset
	3	Changes to Restoration preset
	4	Changes to Restoration2 preset
	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	Fn + Delete	Deletes the selected measurement/implant/airway
Airway	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	⌘ + C / ⌘ + V	Copy/Paste the selected notation

	Fn + Delete	Deletes the selected measurement/notation/airway
Restoration	Fn + Delete	Deletes the selected measurement/restoration
	0	Changes to Volume preset
	1	Changes to Implant preset
	2	Changes to Stone Models preset
	3	Changes to Restoration preset
	4	Changes to Restoration2 preset
	P	Volume axial clipping is toggled on/off
	F	Volume clipping is flipped
Endo	0	Changes to Teeth rendering
	1	Changes to Pulp rendering
	2	Changes to Bone rendering
	3	Changes to Gradient Edges
	4	Changes to Inverse 1
	5	Changes to Inverse 2
	P	Volume clipping is toggled on/off
	Q	Enables Freehand Volume Sculpting tool
	W	Enables Polygon Sculpture tool
	⌘ + C/ ⌘ + V	Copy/Paste the selected notation
	Fn + Delete	Deletes the selected measurement/notations
TMJ	⌘ + C/ ⌘ + V	Copy/Paste the selected notation
	Fn + Delete	Deletes the selected measurement/notations
Superimposition	P	Volume clipping is toggled on/off

	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	Fn + Delete	Deletes the selected measurement
Model	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	Fn + Delete	Deletes the selected measurement/notation
3DAnalysis	0	Changes to Soft Tissue+Bone 1 rendering
	1	Changes to Soft Tissue+Bone 2 rendering
	2	Changes to Teeth rendering
	3	Changes to Bone rendering
	4	Changes to X-ray rendering
	5	Changes to GrayScale rendering
	6	Changes to Custom rendering
	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	Fn + Delete	Deletes the selected measurement/notation/airway

Medical Design Studio	0	Changes to Gray Scale
	1	Changes to Inverse
	2	Changes to Bone
	3	Changes to Teeth
	4	Changes to IsoSurface
	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	Q	Enables Freehand Volume Sculpting tool
	W	Enables Polygon Sculpture tool
	Fn + Delete	Deletes the selected measurement
Report	D	Deletes page
	E	Bring up Edit Phrases dialog box
	R	Adds page
	P	Go to previous page
	N	Go to next page
	Fn + Delete	Deletes the selected box
Stitching	P	Volume clipping is toggled on/off
	A	Volume is clipped axially
	S	Volume is clipped sagittally
	C	Volume is clipped coronally
	F	Volume clipping is flipped
	R	Resets view per adjustment

Index

This comprehensive list provides a quick and easy way to find the relevant information as desired.

- 3D Landmark Point, 58, 139, 156
- 3DAnalysis View Tab, 155
- Abutment, 93
- Airway Measurement, 55, 56, 151
- Analysis, 171, 191
- Apical Space, 82
- Arch Section View Tab, 34
- Arch Spline, 35, 39, 74, 107, 113, 114, 115
- Articulation, 97
- Bone Density, 82
- Bone Graft, 67, 75
- Bridges, 96
- Brightness & Contrast, 37, 45, 52, 60, 68, 87, 102, 109, 114, 118, 158
- Build Crown, 95
- Case Information, 27
- Check Sleeves, 67, 77
- Clipping, 32
- Clipping, 60
- Clipping, 68
- Clipping, 69
- Clipping, 123
- Clipping, 141
- Clipping, 148
- Clipping, 158
- Collision Indicator, 85, 87
- Color Presets, 37, 68, 109
- Comments, 59, 60, 66, 85, 113, 114, 121, 132, 136, 139
- Control Panel, 16, 37, 45, 52, 60, 68, 87, 102, 109, 114, 118, 123, 132, 141, 148, 158, 208, 209, 222
- Coordinate System, 159, 160, 164, 196
- Custom Projection, 45, 52, 102
- Custom Section, 45, 52
- Data Group, 192
- Default Tracing Tasks and Landmarks, 198
- Density Profile, 67, 70, 82
- DICOM, 21, 23, 137
- DICOM & Invivo File Loading, 21
- Export Image, 137
- Export Measurements, 201, 202
- Export Tracing, 205
- Frontal Analysis, 172, 177
- Gallery View Tab, 131
- Grid, 59, 67, 86, 107, 113, 117, 122, 140, 221
- Image Capture, 27, 28
- Image Info, 46, 52
- Implant, 66, 69
- Implant Angles, 66
- Implant Summary, 67
- Implant Types, 69, 81
- Implant View Tab, 65
- Import Image, 132
- Invivo File Saving, 23
- Invivo Model, 152
- Keyboard Shortcuts, 211, 230
- Landmark, 170, 187
- Layout**, 35, 43, 48, 67, 70, 101, 107, 111, 117, 121, 141, 148, 158, 184, 221, 226
- License types, 12
- Life Size, 37, 109, 118, 150, 158
- Measurements, 35, 43, 50, 58, 60, 66, 85, 100, 107, 113, 117, 121, 139, 147, 156, 170, 175, 189
- Menu Bar, 16
- Misch's bone density units, 82
- Model View Tab, 138
- Mouse Navigation Tools, 30, 39, 47, 54, 70, 72, 103, 110, 210
- Move Widget, 32, 66, 121, 127, 141, 145, 152, 221
- Nerve, 38, 40, 41, 71, 141, 149
- Norm Data, 193, 201
- odata, 123, 130
- Panoramics, 39, 74, 112, 115
- Patient Info, 35, 44, 51, 59, 67, 86, 101, 107, 113, 117, 122, 140, 157, 221
- Patient Orientation, 37, 62, 118, 159
- Photowrapping, 142, 157, 178
- Pixel Values, 46, 52
- Pontics, 95
- Profilogram, 157, 206
- Quick Measurement, 59
- Reference Lines and Planes, 170, 190
- Registration, 90, 121, 125, 128, 221, 223
- Rendering Methods, 60
- Rendering Window, 16
- Report PDF, 208
- Report View Tab, 207
- Reset Zoom, 35, 43, 50, 58, 66, 85, 100, 107, 113,

117, 121, 139, 147, 156, 221
Restoration, 76
Restoration View Tab, 84
Sassouni Analysis, 177
Save Tracing, 202
Sculpt (Free Form), 58, 100
Sculpt (Point-to-Point), 58, 100
Section View Tab, 42
Simulation, 141, 152, 158
Software Layout, 16
Stitching View Tab, 220
Stone Model, 72, 87, 90, 141
Super Ceph View Tab, 116
Super Pano View Tab, 112
Superimposition, 120, 180, 183, 205, 206
Superimposition Adjustment, 128
Superimposition View Tab, 120
Surgical Simulation, 157, 203
Template, 208, 209, 217
Text View, 170
TMJ View Tab, 99, 106
Toolbar, 16, 35, 43, 50, 58, 66, 85, 100, 107, 113, 117, 121, 132, 139, 147, 156, 208, 221
Tracing Tasks, 157, 164, 186, 196
VCA, 173, 176
vdata, 123, 130
View Sequence, 36, 44, 51, 59, 64, 67, 78, 101, 108, 140, 153, 157
View Settings, 18
View Setup, 59, 140, 157
View Tabs, 16
Visual Preference, 157, 176, 194, 195
Volume Registration, 121, 128
Volume Render View Tab, 49, 57
Volumetric Measurement, 59, 63
Waxups, 71, 72
Wigglegram, 171, 172, 191, 193

TxSTUDIOMac 6.5

TxSTUDIOMac is a volumetric imaging software designed specifically for clinicians, doctors, physicians, and other qualified medical professionals

REF

SW-TXSMAC-65

11-Mar-22

UDI

(01)00852060007075(10)6.5.0

Intended for use by medical and dental professionals.
Please ensure all hardware devices with the software are password-protected from unauthorized use and all patient information is secure.
Please refer to the instructions for use for a complete list of warnings/precautions.

MD**UK
CA**

0086

<https://learn.osteoidinc.com/invivo-user-manuals>

Anatomage, Inc.
3350 Scott Boulevard
Building 29
Santa Clara, CA 95054 USA
+1 (408) 333-3484

UK**RP**

Qserve Group UK, LTD.
282 Farnborough Road
Farnborough, GU14 7NA
Hampshire, United Kingdom
+44 7408 830172
www.qservegroup.com